Minggu, 27 Oktober 2024

Biochar from Wood Waste and Forestry Waste

The era of decarbonization and bioeconomy continues and continues to grow over time. While some people focus on the carbon neutral sector such as the production of biomass fuels such as wood pellets, wood briquettes or wood chips, people who focus on negative carbon seem to be fewer, including the use of CCS (Carbon Capture and Storage) and biochar production. Compared to CCS, biochar production with pyrolysis is easier and cheaper so it is projected to become a future trend. Logically, the negative carbon scenario is actually much better because in addition to reducing the concentration of CO2 in the atmosphere, while the neutral carbon scenario only does not increase CO2 emissions in the atmosphere, but does not reduce or absorb CO2 in the atmosphere. CO2 sequestration or biochar carbon removal (BCR) is currently also the most industrially relevant carbon removal technology. BCR is a key solution for real climate change mitigation today and its development is very rapid. BCR also has a vital role in the carbon removal technology portfolio. 

 

Woody biomass, especially from wood industrial waste and forestry waste, is a potential raw material for biochar production, even this type of wood biomass is the best raw material because it can produce high quality biochar, namely fixed carbon of more than 80%. The potential for wood biomass raw materials in Indonesia is very large, estimated at 29 million m3/year from forest harvesting waste, and 2 million m3/year from wood processing industry waste including 0.78 million m3 in the form of sawdust (the yield of the sawmill industry ranges from 50-60% and as much as 15-20% consists of sawdust). And that does not include if there is a biomass plantation or energy plantation dedicated to biochar production.

With the condition of agricultural land, plantations and forestry which are experiencing a lot of degradation, the need for biochar is also very large. Among the factors causing the decline in land fertility is the use of chemical fertilizers and pesticides for decades continuously and tends to be excessive. This causes a decline in soil quality which has an impact on crop production because it makes the land more acidic and hard which is estimated to reach millions of hectares. In addition, the price of chemical fertilizers is increasingly expensive and difficult to obtain, which results in low agricultural production, so the government is forced to import several agricultural commodities to meet the needs of the community. This actually does not need to happen considering the potential land in Indonesia is very large, it only needs to improve the condition of the land so that it can be optimal again. Making damaged land fertile is not difficult, it only takes perseverance to repair and care for the land so that it continues to be fertile.

Meanwhile, dry land consists of ultisol soil of 47.5 million ha and oxisol of 18 million ha. Indonesia has a coastline of 106,000 km with a potential land area of ​​1,060,000 ha, generally including marginal land. Millions of hectares of marginal land are spread across several islands, have good prospects for agricultural development but are currently not well managed. The land has a low fertility rate, so technological innovation is needed to improve and increase its productivity. Not to mention post-mining land which is almost all very damaged and also covers millions of hectares. And biochar is the right solution that can restore the condition of the land to be fertile again. 

Slow pyrolysis is the best technology for biochar production. But the technology used must be efficient and emissions meet the threshold standards of the country concerned. In addition, excess heat and/or liquid products and gas products from pyrolysis should also be utilized. With the criteria for pyrolysis technology as above, in addition to the quality and quantity of products, namely biochar, can be maximized, the production process also does not cause new problems in the form of environmental pollution. This is very much in line with biochar business activities so that it becomes a solution to the problem of industrial biomass waste from wood and forestry waste as well as a solution to climate problems. Even the utilization of by-products (excess heat and/or liquid products and gas products from pyrolysis) can also encourage the emergence of other environmentally friendly and renewable products.

In economic terms, the outline can be as follows, namely with an investment of 10 million US dollars, approximately 200,000 tons of biochar with more than 400,000 carbon credits will be produced over a period of 10 years. Or if with an investment of 100 million US dollars, almost 2 million tons of biochar and more than 4 million carbon credits will be produced over a period of 10 years. And for example, with a selling price of biochar of 100 dollars per ton and also a carbon credit of 100 dollars per unit (per ton of CO2), then within 10 years the investment has increased 6 times or it only takes about 1.7 years for the initial investment to return (payback period). Of course, when the price of biochar is higher and / or its carbon credits, of course the return on capital will be faster. And that does not include the utilization of liquid and gas products from pyrolysis and excess heat which also have economic potential that is no less interesting. The trend of the future business era will not only focus on financial profit but also provide solutions to environmental problems and climate problems, and of course solutions to social problems by creating jobs.    

Increasing Food Agriculture Productivity: Biochar Application or Forest Clearing for Food Estate?

Indonesia currently ranks 69th out of 113 countries in 2022 in food security and this is lower than Malaysia and Vietnam with indicator points below the global average. This condition is concerning considering that Indonesia was once self-sufficient in food before and even the price of rice in Indonesia is the most expensive in ASEAN. Efforts to maintain food productivity are indeed a challenge, let alone increasing it. Along with increasing population growth, the need for food automatically increases. The condition of declining food production and productivity is related to a number of factors including land conversion to non-agricultural land, and soil / land damage. A number of regulations have been made to stem the rate of decline in food productivity due to these two things.

Regarding land damage, repair efforts need to be made so that agricultural productivity increases. It is estimated that the area of ​​land damage that occurs is very large with a high level of severity. This requires gradual and sustainable repair efforts with various strategies including improving farming patterns and even a number of incentives. Only with these efforts can the agricultural sector as a source of food be repaired or if not, the damage to agricultural land will get worse so that repair efforts will be more difficult.

Biochar application or forest clearing for food estate ?
Biochar application will be able to repair damaged lands. In addition to being a slow-release fertilizer agent so that fertilizer use becomes efficient and does not pollute the environment, increasing soil pH, increasing soil organic carbon and increasing agricultural productivity, biochar will also help overcome the management of agricultural waste that has so far polluted the environment. The increase in agricultural productivity from the use of biochar is on average around 20%. If Indonesia's current rice production is around 31 million tons per year, then the application of biochar will increase total rice production to 37.2 million tons (an increase of 6.2 million tons). With an average rice production per hectare of 6 tons, the increase of 6.2 million tons is equivalent to increasing the area of ​​agricultural land by 1.03 million hectares. Even damaged land from post-mining can be reclaimed and rehabilitated with the application of biochar, with the land area also reaching millions of hectares. This is certainly better than clearing new forest land for food estates because of its environmental impact. 

As the human population grows, the need for food and energy will continue to increase. Indonesia's population in 2045 is estimated to reach 319 million people and the world's population in 2050 is approaching 10 billion people. The need and urgency of biochar to improve soil quality is increasing. Tens of millions of hectares of all Indonesian acidic soils, which are classified as dry land acidic soils, need to be improved with biochar. This means that the business potential reaches billions of dollars or trillions of rupiah. Meanwhile, rice imports in 2024 are targeted to reach 3.6 million tons (as a buffer), a large amount. With an annual rice requirement of around 31 million tons, the contribution of imported rice reaches more than 10%.

Biochar in addition to repairing soil damage so that it increases its fertility which ultimately increases agricultural productivity is also part of the climate solution, namely by means of carbon sequestration. Biochar applied to the soil will last hundreds or even thousands years, and does not decompose. This is another advantageous factor for biochar producers, namely getting carbon credits. The quality of biochar will determine the acquisition or price of the carbon credit, so that the raw materials of biochar and its production process are affected. The price of carbon credits is increasing so that it is increasingly attractive and also the carbon credit market continues to grow.

Damage to land or agricultural land that occurs is mostly caused by excessive use of chemical fertilizers. If the use of chemical fertilizers can be reduced in dosage or with sufficient use, there will be improvements in land quality. Even if chemical fertilizers are gradually reduced in dosage and organic fertilizers / compost are increasingly added so that in the end chemical fertilizers are not used at all, soil fertility will be optimal as well as agricultural productivity.

The photo from here

Of course, this requires time and continuous effort. Livestock must also be encouraged so that compost / organic fertilizer can also be produced sufficiently from the processing of livestock manure. Integrated farming with livestock is the best solution for improving agricultural land with biochar, especially increasing the efficiency of fertilization. If the above can be implemented properly, then forest clearing for food estate land can also be slowed down / held back by considering all aspects comprehensively so that it is not a short-term solution that tends to be forced, and rushed because of the regime's image efforts even at a cost of hundreds of trillions.     

Minggu, 29 September 2024

EUDR and Is It Time for the Palm Oil Industry to Consider Biochar ?

Malaysian smallholders cultivate around 27% of the total oil palm plantations or equivalent to 1.54 million hectares, while in Indonesia it reaches 41% or equivalent to 6.72 million hectares. Malaysia chose to increase the yield or productivity of FFB as an effort to increase CPO production, namely by being fostered by large companies with a target increase of 600,000 tons/year without increasing the land area. For Malaysia, opening new plantations is something that is very difficult, even impossible, especially with the implementation of the EUDR on December 30, 2024. Consolidation between palm oil farmers is expected to increase efficiency so that it ultimately increases yield and income. The area of ​​Malaysian palm oil plantations is around 5.7 million hectares or around 1/3 of the area of ​​Indonesian palm oil plantations (currently reaching around 17 million hectares). This is also the main reason why Malaysia chose to intensify its palm oil plantations while Indonesia tends to expand palm oil land, even though both countries face two main issues, namely increasing production and climate resilience.

Biochar application is a solution to overcome the two important issues above. Related to the increasing pressure of environmental issues, climate and sustainability, even renewable energy, it seems that biochar will receive more attention. There are many aspects of land and the environment that can be improved with biochar application which ultimately is a solution to the two main issues. For small plantations, biochar application can be easier to do, but for large plantations managed by various palm oil companies, biochar application requires more complex considerations, especially because of the risk factor of the vast area of ​​palm oil plantations, but this biochar option is still attractive. The use of IoT (Internet of Things) can be used to monitor biochar performance on the land, for more details, read here.

The operational efforts of the palm oil industry to be more environmentally friendly and efficient are a driving force and a challenge in themselves. With the large profits from the palm oil industry business, of course the palm oil industry will not simply ignore demands related to the environment and sustainability, especially the EUDR. Palm oil producers, especially Indonesia and Malaysia, are faced with a standard guideline that applies to countries producing 'edible oil', namely that palm oil to be exported must come from land that has been reforested before 2020. Otherwise, the producing country will be considered a country that does not pay attention to the issue of deforestation and hinders the export of palm oil abroad. Various lobbying and negotiation efforts by Indonesia and Malaysia as the two largest palm oil producing countries in the world to the European Union to be more relaxed in implementing the EUDR include great suspicion as to why rapeseed oil is not treated the same as palm oil. The production of rapeseed oil as a raw material for biofuel in Europe is protected and ignores its environmental impact.

Indonesia as a coconut island seduction country has an experience of coconut oil commodities in the past that can also be a reference for this. The era of the glory of copra or coconut oil was around the transitional decade of the 19th century to the 20th century or more precisely between the 1870s and 1950s and its peak in the 1920s. Why are copra and coconut oil in particular currently slumping and losing out to other vegetable oils? The long history of trade competition is the answer. Several parties, especially the American Soybean Association (ASA) accused coconut oil of being an evil oil containing cholesterol and saturated fat that clogs coronary arteries. The accusation was never proven true, in fact it was proven otherwise, but it became one of the main causes of the destruction of the global copra and coconut trade. The tropical oil campaign and war took about 30 years or in the 1950s to the late 1980s in the United States and so finally the Indonesian coconut industry slumped.

Climate factors in the form of efforts to reject deforestation with its EUDR and economic factors in the form of palm oil production will be a fierce feud but sooner or later it will definitely reach a meeting point that can be accepted by both parties because they need each other. Diverting CPO products to markets that do not require environmental requirements such as the EUDR also seems to be untimely. Furthermore, in the form of addressing two important issues in the palm oil industry, namely increasing production and climate resilience and in line with the EUDR, biochar is the right solution. The question is, will this biochar be an important consideration and even find its momentum to be applied in oil palm plantations, especially for Indonesia and Malaysia? And the implementation of the EUDR as its driving force. Let’s see.   

Rabu, 04 September 2024

Biochar as Deforestation Solution in Palm Oil Plantations and EUDR

The development of the palm oil industry and its plantations in Indonesia is very rapid, especially in the last 10 years and currently the area of ​​Indonesian palm oil plantations is estimated to reach 17 million hectares. As the largest vegetable oil producing plant in the world and the largest palm oil plantation area in the world, of course palm oil has a strategic value in the Indonesian economy. The average speed of Indonesian palm oil plantation area is 6.5% per year or equivalent to around 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% on average.

Even the largest land expansion occurred in 2017, which increased by 2.8 million hectares. From 2015 to 2019, the total area of ​​palm oil plantations increased by 3.7 million hectares. The extensification or expansion of palm oil plantations has been widely "accused" and has become the focus of the world as a result of the conversion of forest land, resulting in a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions, has worsened the image of Indonesian palm oil, which in turn has affected the selling price of palm oil products, both CPO and its derivative products. Improving this image is also not easy. One effective effort is to stop the extensification efforts so that forest land remains forest land and does not turn into oil palm plantations. The European Union on Deforestation-free Regulation (EUDR), which will come into effect on December 30, 2024, as an effort to prevent deforestation, is also an important consideration. The regulation requires consumers and producers along the supply chain of certain commodities to conduct due diligence and risk assessments to ensure that their products do not contribute to deforestation. The EUDR also applies a tiered inspection and penalty system based on the level of risk perceived in the country of origin.

With the extensification of oil palm land of more than 1 million per hectare each year but the increase in oil palm fruit production is only 11%, it is certainly less attractive and must be avoided, especially with the world's spotlight on the increasingly rapid deforestation. This also increasingly indicates the low productivity of palm oil plantations. In fact, by improving soil quality, palm oil fruit productivity can be increased significantly and the opening of new land for the creation of palm oil plantations can be avoided. Biomass waste in palm oil plantations and in palm oil mills can be used for biochar production as a solution to this problem.

With the increase in productivity of fresh fruit bunches (FFB) with the use of biochar, new palm oil plantations do not need to be opened again. Assuming an average increase in productivity of 20%, CPO production will also increase by 20% or equivalent to 2 million tons. This increase will be equivalent to opening new land covering an area of ​​more than 2 million hectares. Of course, it is not a small area of ​​land. With a 20% increase in production, it is very likely that national needs for CPO in particular have been met and so too for the export market. Another advantage of using biochar is as a climate solution as carbon sequestration/carbon sink. So the two main problems in the palm oil industry in the form of increasing productivity and climate change resilience can be overcome at once with the application of biochar.

The Urgency of IOT and Biochar Applications in Palm Oil Plantations

The sustainability trend in palm oil plantations is increasingly important and urgent, which is of course part of the global solution to environmental and climate problems. The vastness of palm oil plantations and the large production of palm oil are in the spotlight in the industry. Waste management and environmental pollution are important concerns. The large volume of biomass waste has the potential to be a source of environmental pollution and so is the excessive use of chemical fertilizers in palm oil plantations which will also cause environmental pollution. Inappropriate land use, for example deforestation and land conversion, are also other concerns.

Two important issues in the palm oil industry are increasing FFB productivity (yield improvement) and climate change resilience. And thank God, both of these things can be handled at once, namely by applying biochar. Palm oil mill biomass waste (especially palm oil empty fruit bunch) will be converted into biochar and then applied to plantation soil (sustainable soil amendment) with fertilizer so that it becomes a slow release fertilizer that will increase NUE (nutrient use efficiency) and minimize environmental pollution. With the increase in NUE, there will be yield improvement or an increase in FFB productivity. And the application of biochar which will remain in the soil or not decompose for thousands of years will become carbon sequestration / carbon sink which is in line with climate change resilience. A precise solution with one action, of course this should be very interesting and awaited by these palm oil companies.

To ensure that the biochar can work properly, an instrument is needed to measure performance and monitor it. That is why IoT (Internet of things) in this sector is needed. How slow can it goes fertilizer nutrients can be measured and monitored accurately, quickly and precisely. In this way, palm oil productivity can also be predicted. The area of ​​land on palm oil plantations that reaches thousands or tens of thousands of hectares is also not an obstacle. The area of ​​palm oil plantations in Indonesia is currently estimated to reach 17 million hectares and in Malaysia it reaches 5 million hectares, of course these palm oil companies are also trying to achieve their best level of sustainability according to the demands of the times. This is so that the application of biochar on palm oil plantations will become a trend and even its operational standards. The entry point by ensuring biochar performance with IoT is an important consideration.

This biochar application also follows the 4Rs rule, namely the right source (appropriate biochar raw material), right place (appropriate application area), right rate (appropriate dosage) and right timing. The physical and chemical properties of biochar differ depending on the raw material and production process. By following the 4R rule, biochar performance can be maximized. On the other hand, modernization in the palm oil industry also continues to be improved. The public perception of work in oil palm plantations, abbreviated as 3D (dangerous, difficult, dirty), will be gradually changed with mechanization, automation and digitalization. The ratio of workers to plantation land currently around 1: 8 ha will be increased to more than double to 1: 17.5 ha with the above modernization so that workers' wages can also be increased. This modernization is expected to help overcome the two important issues above with the biochar application.

Selasa, 06 Agustus 2024

Why is There No Biochar Production for The Palm Oil Industry Yet?

Even though biomass waste is abundant in the palm oil industry, both in the plantation area and in the palm oil mill area, most of the biomass waste, especially empty fruit bunches or EFB, is still not utilized or is simply piled up or thrown away. In fact, if the palm oil industry has a strong vision about maximizing profits by minimizing the occurrence of waste, especially biomass, and maximizing environmental sustainability as well as being part of the climate solution, then biomass waste, especially empty fruit bunches or EFB, is a big opportunity.  Currently, special department in the palm oil industry that specifically deal with sustainability issues are starting to be created by palm oil companies. Waste management issues including the utilization of EFB, reducing soil and water pollution due to fertilizers and increasing fertilizer efficiency are the concerns of the sustainability department. 

The empty fruit bunches or EFB can be used as fuel so that most or all of the palm kernel shells or PKS can be sold directly and even exported. Palm oil mill boiler fuel currently uses fuel in the form of palm fiber (mesocarp fiber) and some palm kernel shells / PKS, which can be replaced using empty fruit bunches (EFB) and palm fiber (mesocarp fiber) and without palm kernel shells / PKS. Palm kernel shells / PKS are a very popular biomass fuel in the global market that competes fiercely with wood pellets. By being able to sell all palm kernel shells / PKS and at the same time utilize empty fruit bunch / EFB waste, the palm oil industry will provide many economic benefits.


The use of empty fruit bunches / EFB and mesocarp fiber as a heat source for the boiler is not burned as usual or as is done by all palm oil mills today but must be gasified or pyrolyzed so that another product is produced in the form of biochar. Although gasification can be used to produce biochar, pyrolysis is more recommended because the quality and quantity of biochar will be better. The biochar can later be used for the palm oil plantation itself. The use of biochar in palm oil plantations will significantly save on fertilizer use as well as reducing water and soil pollution due to inefficient use of fertilizer. The biggest cost in operating a palm oil plantation is fertilizer, so by using biochar these operational costs can automatically be reduced. Biochar will become a slow release agent so that fertilizer use will be more efficient or increase NUE (Nutrients Use Efficiency).

Empty fruit bunches / EFB and mesocarp fiber are solid waste from palm oil mills so the waste is located around the palm oil mill, while biochar is used for palm oil plantations. In palm oil companies, management is generally separated between the plantation and mill departments. The use of biochar in palm oil plantations while the raw material comes from palm oil mills requires special arrangements regarding this matter. This could be, for example, trucks transporting fresh fruit bunch / FFB from the plantation to the palm oil mill, then after the FFB is unloaded at the mill, they then go to the plantation again carrying biochar from the palm oil mill.

Currently, no one is utilizing empty fruit bunches / EFB and palm mesocarp fiber as a source of boiler heat and biochar production. The main factor causing this is the main orientation or vision of the palm oil company itself as described above. This is predicted to change soon as awareness of climate issues increases and reaches all levels, especially in sectors related to energy and sustainibility. Moreover, when biochar is applied to plantation land, it also gets carbon credit as carbon sequestration. The smoke coming out of the boiler furnace will also be cleaner as seen from its opacity. The use of gas and liquid fuels from pyrolysis by-products will produce better combustion quality as well as smoke from the chimney. And even the liquid products from pyrolysis can also be used as biopesticides and organic fertilizers. Boiler efficiency will also increase because it uses boiler feed water (BFW) in the form of hot water from the condenser output of the pyrolysis unit.

Apart from old palm oil mills which really want to upgrade their industrial energy systems and fertilizer efficiency in their plantations including sustaibility according to this vision, new palm oil mills whose status is in the development stage should be able to apply this concept more easily. New palm oil mills can immediately follow developments and demands of the times so that they become trend setters with this vision. Being a pioneer and trend setter is indeed more difficult and even risky than just being a follower, but this will raise the reputation and become a leader in the industry so it should also have a positive impact on the company's business performance. A worthy effort.     

Kamis, 04 Juli 2024

SBE Pyrolysis: A Profitable Waste Management Solution

Spent Bleaching Earth (SBE) which is solid waste produced from the bleaching process in the CPO processing industry into cooking oil and oleochemicals is increasing along with the production of palm oil derivative products or downstream palm oil industries such as cooking oil and oleochemicals. The amount of bleaching earth used generally ranges from 0.5-2.0% of the total CPO refined, depending on the quality of the CPO to be processed in the refining process. SBE is included in category 2 hazardous toxic material (B3) waste from specific sources with waste code B413. SBE is categorized as hazardous toxic material (B3) waste because it contains high oil and has characteristics that are flammable and corrosive. SBE can be categorized as non-B3 waste if its oil content is below 3%.

The classification of SBE status as hazardous toxic material (B3) waste in Indonesia is different from the status of SBE in Malaysia, which is also the second largest palm oil producer in the world. SBE waste produced by the Malaysian refinery industry is not classified as B3 waste but is still categorized as solid waste from refinery factories whose processing is regulated in the Solid Waste Regulation (SWR) so that the waste can be reused into products with high economic value.

According to the Indonesian Vegetable Oil Industry Association (GIMNI, 2021), with a refinery capacity of palm oil/CPO between 600 tons to 2,500 tons per day, and assuming the use of bleaching earth (BE) of 1%-2%, the average will produce 6-50 tons of SBE per day. And according to the Directorate General of Waste Management, Toxic and Hazardous Materials (PSLB3) of the Ministry of Environment and Forestry, the SBE produced from the vegetable oil refining process in Indonesia in 2019 reached 779 thousand tons. Of that amount, 51.47% (401 thousand tons) of SBE was processed, while the remaining 48.39% (378 thousand tons) was stored or stockpiled. A very large amount and has the potential to pollute the environment.

SBE has an oil content of around 20-40%, so it has the potential to be utilized. In addition, SBE also contains color, gum, metals namely Silica, Aluminum oxide, Ferrioxide, Magnesia, other metals and water. Basically, SBE processing is done by separating oil from its solids. The separated oil can then be used as raw material for biodiesel and even aircraft fuel (bio-jet fuel) such as POME / PAO and UCO. With the amount of unprocessed SBE reaching around 378 thousand tons per year, the potential oil that can be extracted reaches around 115 thousand tons per year.

With pyrolysis, the process of separating solid and liquid fractions from SBE is easy to do, as well as oil recovery can be maximized, as well as SBE becomes non-hazardous toxic material (non-B3) waste because its oil content is below 3%. More specifically, with continuous pyrolysis, the volume of SBE waste reaching 50 tons per day in the CPO refinery unit can be easily done. The large potential economic value that can be obtained from the utilization of SBE is a shame if it is not optimized. The market opportunity for processed products from SBE waste is also expected to be bright in the future, along with the development of market preferences that demand the availability of eco-friendly and sustainable products.