Rabu, 04 September 2024

Biochar as Deforestation Solution in Palm Oil Plantations and EUDR

The development of the palm oil industry and its plantations in Indonesia is very rapid, especially in the last 10 years and currently the area of ​​Indonesian palm oil plantations is estimated to reach 17 million hectares. As the largest vegetable oil producing plant in the world and the largest palm oil plantation area in the world, of course palm oil has a strategic value in the Indonesian economy. The average speed of Indonesian palm oil plantation area is 6.5% per year or equivalent to around 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% on average.

Even the largest land expansion occurred in 2017, which increased by 2.8 million hectares. From 2015 to 2019, the total area of ​​palm oil plantations increased by 3.7 million hectares. The extensification or expansion of palm oil plantations has been widely "accused" and has become the focus of the world as a result of the conversion of forest land, resulting in a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions, has worsened the image of Indonesian palm oil, which in turn has affected the selling price of palm oil products, both CPO and its derivative products. Improving this image is also not easy. One effective effort is to stop the extensification efforts so that forest land remains forest land and does not turn into oil palm plantations. The European Union on Deforestation-free Regulation (EUDR), which will come into effect on December 30, 2024, as an effort to prevent deforestation, is also an important consideration. The regulation requires consumers and producers along the supply chain of certain commodities to conduct due diligence and risk assessments to ensure that their products do not contribute to deforestation. The EUDR also applies a tiered inspection and penalty system based on the level of risk perceived in the country of origin.

With the extensification of oil palm land of more than 1 million per hectare each year but the increase in oil palm fruit production is only 11%, it is certainly less attractive and must be avoided, especially with the world's spotlight on the increasingly rapid deforestation. This also increasingly indicates the low productivity of palm oil plantations. In fact, by improving soil quality, palm oil fruit productivity can be increased significantly and the opening of new land for the creation of palm oil plantations can be avoided. Biomass waste in palm oil plantations and in palm oil mills can be used for biochar production as a solution to this problem.

With the increase in productivity of fresh fruit bunches (FFB) with the use of biochar, new palm oil plantations do not need to be opened again. Assuming an average increase in productivity of 20%, CPO production will also increase by 20% or equivalent to 2 million tons. This increase will be equivalent to opening new land covering an area of ​​more than 2 million hectares. Of course, it is not a small area of ​​land. With a 20% increase in production, it is very likely that national needs for CPO in particular have been met and so too for the export market. Another advantage of using biochar is as a climate solution as carbon sequestration/carbon sink. So the two main problems in the palm oil industry in the form of increasing productivity and climate change resilience can be overcome at once with the application of biochar.

The Urgency of IOT and Biochar Applications in Palm Oil Plantations

The sustainability trend in palm oil plantations is increasingly important and urgent, which is of course part of the global solution to environmental and climate problems. The vastness of palm oil plantations and the large production of palm oil are in the spotlight in the industry. Waste management and environmental pollution are important concerns. The large volume of biomass waste has the potential to be a source of environmental pollution and so is the excessive use of chemical fertilizers in palm oil plantations which will also cause environmental pollution. Inappropriate land use, for example deforestation and land conversion, are also other concerns.

Two important issues in the palm oil industry are increasing FFB productivity (yield improvement) and climate change resilience. And thank God, both of these things can be handled at once, namely by applying biochar. Palm oil mill biomass waste (especially palm oil empty fruit bunch) will be converted into biochar and then applied to plantation soil (sustainable soil amendment) with fertilizer so that it becomes a slow release fertilizer that will increase NUE (nutrient use efficiency) and minimize environmental pollution. With the increase in NUE, there will be yield improvement or an increase in FFB productivity. And the application of biochar which will remain in the soil or not decompose for thousands of years will become carbon sequestration / carbon sink which is in line with climate change resilience. A precise solution with one action, of course this should be very interesting and awaited by these palm oil companies.

To ensure that the biochar can work properly, an instrument is needed to measure performance and monitor it. That is why IoT (Internet of things) in this sector is needed. How slow can it goes fertilizer nutrients can be measured and monitored accurately, quickly and precisely. In this way, palm oil productivity can also be predicted. The area of ​​land on palm oil plantations that reaches thousands or tens of thousands of hectares is also not an obstacle. The area of ​​palm oil plantations in Indonesia is currently estimated to reach 17 million hectares and in Malaysia it reaches 5 million hectares, of course these palm oil companies are also trying to achieve their best level of sustainability according to the demands of the times. This is so that the application of biochar on palm oil plantations will become a trend and even its operational standards. The entry point by ensuring biochar performance with IoT is an important consideration.

This biochar application also follows the 4Rs rule, namely the right source (appropriate biochar raw material), right place (appropriate application area), right rate (appropriate dosage) and right timing. The physical and chemical properties of biochar differ depending on the raw material and production process. By following the 4R rule, biochar performance can be maximized. On the other hand, modernization in the palm oil industry also continues to be improved. The public perception of work in oil palm plantations, abbreviated as 3D (dangerous, difficult, dirty), will be gradually changed with mechanization, automation and digitalization. The ratio of workers to plantation land currently around 1: 8 ha will be increased to more than double to 1: 17.5 ha with the above modernization so that workers' wages can also be increased. This modernization is expected to help overcome the two important issues above with the biochar application.