Minggu, 22 Desember 2024

Biochar For Patchouli Plantation

Indonesia is famous for producing various essential oils, including patchouli oil, clove leaf oil and so on. The main use of essential oils is mainly for food, pharmaceuticals, fragrances (perfumes). The potential of this country to develop essential oils is very large due to climate factors, land area and soil fertility. World export-import statistics data show that consumption of essential oils and their derivatives has increased by around 10% from year to year. Of the 70 types of essential oils traded on the international market, citronella oil, patchouli, vetiver, ylang-ylang, cloves, pepper, and jasmine oils are supplied from Indonesia. Indonesia is the largest country in Southeast Asia producing essential oils and is among the top 10 in the world.

Patchouli production centers in Indonesia are in Bengkulu, West Sumatra, and Nangro Aceh Darussalam. The quality of Indonesian patchouli oil is known to be the best and controls 80-90% of the world's market share or the largest supplier of patchouli oil in the world. This patchouli oil comes from the distillation of dried leaves to extract the oil which is widely used in various industrial activities. Patchouli oil is used as a fixative or binder for other fragrance ingredients in perfume and cosmetic compositions. The area of patchouli planting reaches 21,716 ha spread across 11 provinces in Indonesia, and in 2008 about 2,500 tons of patchouli oil were produced.

Patchouli plants commonly cultivated in Indonesia are Aceh patchouli because the oil content is > 2% and the oil quality is patchouli alcohol (PA) > 30% higher than Java patchouli which has an oil content of <2%. Furthermore, with Aceh patchouli, there are three varieties of patchouli plants found in Aceh, namely Tapaktuan patchouli, Lhokseumawe patchouli, Sidikalang patchouli. The PA levels of the three varieties vary, namely: Tapaktuan (28.69-35.90%), Lhokseumawe (29.11-34.46%), and Sidikalang (30.21-35.20%).

Patchouli Oil Production in Sentra Province 2015-2020**)

One of the factors that support plant growth and optimal production is the availability of sufficient nutrients in the soil. The level of nutrient availability for patchouli plants must be optimal to obtain high growth and oil content. Patchouli is known to be very greedy for nutrients, especially nitrogen (N), phosphorus (P) and potassium (K). Patchouli plants are among those that require quite a lot of nutrients, so that production continues to run optimally, fertilizer application is carried out very seriously. This is so that the level of soil fertility must be maintained optimally if we expect optimal patchouli agricultural production. Therefore, in the shifting patchouli cultivation system, there will be a very rapid decrease in land fertility which will damage the land.

Patchouli can be cultivated on dry land, thus the development of patchouli plants is very relevant to the potential of dry land which is quite extensive in Indonesia compared to rice fields. In fact, dry land is the most widely distributed sub-optimal land, which is around 122.1 million ha consisting of 108.8 million ha of acidic dry land and 13.3 million ha of dry climate dry land. The development of patchouli plants has a dual purpose, in addition to increasing farmers' income, it also increases the productivity of dry land which is widely spread in Indonesia.

To improve land quality, namely by applying biochar. The application of biochar to agricultural land functions as a soil amendment that can improve the chemical properties of the soil (pH, cation exchange capacity, total N, and available P), the physical properties of the soil (bulk density, porosity and the ability of the soil to hold water). Improvement in the quality of the chemical and physical properties of the soil has an impact on the availability of nutrients and water through the ability of biochar to retain nutrients and water. Ultimately, the addition of biochar has implications for increasing the productivity of patchouli plants. In the future, it is hoped that with the application of biochar, more suboptimal and degraded lands which can be restored and plants productivity increased.

Optimizing the use of dry land for food crop cultivation needs to begin with land rehabilitation efforts so that plants can produce optimally. Soil amendments that are cheap, readily available and can last a long time in the soil are expected to be able to trigger the rate of increase in dry land productivity. The potential for agricultural waste to be converted into soil amendments (biochar) in Indonesia is quite large. Biochar applications have been proven to improve the quality of physical and chemical properties of the soil, as well as increase water availability. Crop productivity also increases in line with the recovery of land quality.

Biochar can also be added during composting so that more nitrogen (N) content can be absorbed in the biochar. The higher the nitrogen (N), the better the compost quality will be. Total N is one of the macro elements needed by plants in large quantities, accounting for 1.5% of the dry weight of the plant. Nitrogen is useful in the formation of protein, a component of plant chlorophyll, and if morphologically N plays a role in the formation of leaves and stems of plants or the vegetative formation of plants. Phosphorus is an absolute nutrient needed by plants after nitrogen. Symptoms of phosphorus (P) nutrient deficiency are seen as the color of the plant becomes dark green or purplish green which is then followed by older leaves turning purplish. The addition of biochar and compost, in addition to increasing the productivity of patchouli leaves, can even increase the yield of patchouli oil from an average of 2% to 4% and the patchouli alcohol content of patchouli oil from an average of 32% to 40%.

Tidak ada komentar:

Posting Komentar