Tampilkan postingan dengan label MSW Pyrolysis. Tampilkan semua postingan
Tampilkan postingan dengan label MSW Pyrolysis. Tampilkan semua postingan

Selasa, 06 November 2018

Advantages of Municipal Waste Processing by Pyrolysis Compared to Fluidized Bed Combustion, Incenerator, Hydrothermal Carbonization (HTC) and Gasification

Municipal waste is always a problem everywhere, especially in big cities. With proper processing, the municipal waste should be an attractive opportunity that has great potential. Municipal waste that amounts to thousands of tons per day needs fast handling so that it does not cause problems, moreover the waste management should require cheap investment and even benefit the waste management party. The question is what is the waste processed into, in what ways and where can it be used? Let's compare waste processing with a thermal route with various existing technologies, namely fluidized bed combustion, incenerator, hydrothermal carbonization (HTC) and gasification. Why are only thermal routes compared? This is because if the biological route takes a long processing time and requires a large place. In short, the biological route is not effective in overcoming the problem of municipal waste.
Basically all the thermal technologies mentioned above can be used to process municipal waste, only how effective and how economically profitable it is the topic of discussion. It really depends on the condition of each region, for example a number of major cities in Indonesia have oversupply electricity production, so that if added to electricity production it will meaningless and not absorbed. Another factor is the investment needed for waste processing equipment, which is generally still very expensive. Based on this, a solution is needed that can be suitable for a particular region. In fluidized bed combustion technology, incenerator and gasification in general is to produce electricity, even though electricity has also been oversupplied so it is not an option.
With HTC technology will produce the main product in the form of carbon material or charcoal, but HTC equipment investment is still expensive. Well, of all the thermal route technologies, continuous pyrolysis is the best choice because it produces the main product in the form of charcoal. Charcoal with the main content of carbon can be used for fuel, especially boilers in the industry. Boilers that have been using coal even from other fossil energy such as gas and petroleum can switch to using charcoal produced from municipal waste. The use of charcoal from municipal waste will certainly reduce the use of coal in particular and fossil energy in general. And the most important thing is of course to overcome the environmental problems caused by the garbage. The continuous pyrolysis units are also not centralized in one place, but can be spread more to various locations on a medium scale, for example each location to process municipal waste with a capacity of 200 tons / day. If let's say Jakarta produces 5000 tons / day of municipal solid waste every day, 25 continuous pyrolysis units are needed. To save transportation and facilitate storage and use, the charcoal product can be made of charcoal pellets or charcoal briquettes.
With the use of continuous pyrolysis, InsyaAllah the problem of municipal waste in big cities can be overcome while providing economic benefits (read: profits) for the manager companies. While the garbage problem continues to haunt and has never been resolved to this day, so an effective and solution-oriented innovation is needed to overcome it. Jakarta is the largest city in Indonesia surrounded by many industrial estates and boilers are one of the important equipment widely used by these industries. If Jakarta's waste is processed into charcoal, it can replace the fuel for the boilers. Steam power plants can also use charcoal for their fuel, for example with cofiring. 

Jumat, 07 September 2012

7 Reasons Why Future of World Economy Depends on Renewable Energy

There are various reasons as to why the global economic future depends on alternative renewable energy sources. Here are seven of these reasons.

  1. Reducing the effects of global warming. Alternative renewable energy sources will provide a solution to the ecological crisis that is caused in part by global warming. If the switch to alternative renewable energy sources is not made soon, this may have a very serious impact on the world economy and the world’s communities.
  2. Fossil fuels are running out. Oil and natural gas are not infinite and will run out eventually. Even before they run out, they will become increasingly expensive because of scarcity. The resulting energy crisis will have a devastating impact on the global economy.
  3. Reducing pollution. Alternative renewable energy sources are a wonderful way for reducing the global levels of pollution. For example, waste to energy is a great method of turning discarded trash into desperately needed energy to power and heat our homes.

  4. Supporting developing countries. The need for energy goes up every year, especially as more developing countries advance. When they have access to domestically produced energy, it will make their development process easier, as local economies benefit from the abundance of businesses and jobs. The countries of the future will be the countires that are embracing green energy sources right now. Look at China – they got into the act this last few years as they understand that there future depends on it. More and more countries are taking action. Anything to do with the green economy is going to be huge in the next few decades.

  1. Moving away from foreign oil dependency. It is possible to produce alternative renewable energy sources domestically in every country. This means that no nation will depend on another to provide it with the means to produce energy, as well as a cleaner domestic environment overall.
  2.  Investing in alternative energy. It is a smart choice to invest in alternative energy. This means that it is not only a great opportunity to help our planet, but also one to receive a good financial return in the end. 
  3. Creating green jobs. Many new jobs would be created once the switch to alternative renewable energy sources is made. Factory jobs would be needed, since the manufacturing of energy source components is needed. Technicians would be needed to install, service, and repair those energy source components, like wind turbines, solar panels, or municipal waste pyrolyzer.
While for the specific reasons on the biomass for energy with thermal energy conversion route, please click here.


For the original article, click here

For more information, go to:
en.wikipedia.org/wiki/Renewable_energy


Senin, 31 Oktober 2011

Why Use Pyrolysis to MSW Treatment?


The main difference between the pyrolysis, gasification and incineration: the amount of oxygen that is supplied to thermal reactors. Pyrolysis has advantages in producing gas or oil products from waste that can be used as fuel for its process of pyrolysis.

Quantitatively differences between the pyrolysis, gasification and combustion: based on the needs of the air needed during the process, i.e. as follows
-If the
amount of air: fuel (AFR, air-fuel ratio) = 0, then the process is called pyrolysis.
-If the AFR <1.5 then the process is called gasification.
-If the AFR> 1.5 then it is called the combustion process


Pyrolysis have a number of advantages are as follows:
-Lower temperature process (400-800 C) so the smaller the investment costs
-Flue-gas emissions below the required threshold.
-All the pyrolysis products have economic value.
So that the sustainability of MSW processing is not only dependent on the tipping fee, but rather on the sale of the pyrolysis products.

-Pyrolysis can adjust to the type of feedstock such as pyrolysis of plastic will result in major product syn crude oil, pyrolysis of scrap tires will be produced also syn crude oil, carbon black and syn gas, and so other feedstock.
The use according to type of feedstock will increase the economic value of the resulting product significantly. In process aspects this will be considered against the availability of feedstock and selling value of products produced.

Institute of Applied Energy (Tokyo) published in 2004 an analysis of stoker incinerator and pyrolysis plants operating under the same conditions. The analysis revealed that a conventional stoker grate incinerator with a steam turbine has no performance advantage over a pyrolysis plant at any scale.