Tampilkan postingan dengan label continous pyrolysis. Tampilkan semua postingan
Tampilkan postingan dengan label continous pyrolysis. Tampilkan semua postingan

Rabu, 24 November 2021

Utilization of Excess Energy from Biochar Production with Pyrolysis

Most of the production equipments for biochar are currently obsolete, so that the productivity and quality of the products produced are low, also causing environmental problems, namely air pollution. In equipment with this technology, the production process is also not running efficiently, indicated by the large amount of energy or heat loss so that it is less profitable. Slow pyrolysis technology is the best technology for biochar production because it maximizes the production of a solid fraction (biochar). Meanwhile, other thermal technology group are not so suitable for biochar production, for example fast pyrolysis, the main objective of which is to maximize its liquid product or biooil, gasification is the main objective of maximizing gas or syngas product as well as hydrothermal carbonization (HTC) or wet pyrolysis requiring high pressure operating conditions so that it is difficult to be applied. Modern slow pyrolysis technology will operate autothermal / self sustain fuel, safe, good process control and energy management, so that in this way in addition to energy being used for the pyrolysis process itself, excess energy can also be used for other needs such as electricity or heat production.

 There are three main variables for this pyrolysis process, namely heating rate, duration / residence time and temperature. The quality and quantity of biochar are determined by these process variables. For example, biochar production with a temperature of less than 400 C will produce acidic biochar, while biochar production above this temperature will produce alkaline biochar. Currently, the pH of biochar produced ranges from 4 to 12. There are also those who make a category about the pyrolysis temperature for biochar production, namely, low with less than 250 C, medium (250 - 500 C), high with more than 500 C. According to some researches fixed carbon also increased from 56% to 93% at 300 and 800 C pyrolysis temperatures. The surface area also increased from 120 m2 / gram at 400 C to 460 m2 / gram at 900 C. 

And indeed, basically the quality and quantity of biochar is determined by the raw materials used and the conditions of the production process, especially the pyrolysis. In fact, to ensure the quality of biochar, all aspects need to be considered such as raw materials and production processes such as the pyrolysis operating temperature should not be more than 20%, interruptions when production are allowed as long as the conditions of subsequent production parameters are maintained the same as before the restart. The composition of the raw material should not fluctuate more than 15%. And for modern pyrolysis equipment, the excess energy must be utilized with an estimated 35-60% of the energy from the biomass raw material found in pyrolysis gas. A number of agricultural waste processings can use the pyrolysis optimally, including:

 1. Palm Oil Industry

The use of pyrolysis technology for palm oil companies, especially in Indonesia, is currently ideal. This is because palm oil mills or CPO mills produce a lot of solid waste biomass namely, empty fruit bunches/EFB, fiber and palm kernel shell. And because palm kernel shell / PKS has a lot of demand both from within and outside the country for industrial fuel and power plants, this PKS should not be used as raw material for pyrolysis or biochar production, but can be directly used as a trading commodity.  The EFB and fiber are used as raw material for biochar and then the biochar is used to improve the soil quality of palm oil plantation so that fresh fruit bunch or FFB productivity increases. Excess energy from pyrolysis is then used as boiler fuel so that it can reduce or even replace all PKS as the the boiler fuel. And because the boiler fuel is replaced with the excess energy pyrolysis, so can be  all of the PKS can be sold. 

2. Integrated Coconut Industry

Products from coconut processing such as copra, dessicated coconut, and nata de coco require heat in the production process. Coconut shell charcoal is also a favorite charcoal with a large market demand. The charcoal will usually be further processed into briquettes for energy and activated carbon for various industries. For biochar production, coconut industrial wastes such as coir/fiber, bunch and midrib can be used. Excess energy of pyrolysis can be used for the production of the above products and other advanced products. The low productivity of Indonesian coconut production needs to be improved, one of which is by improving soil quality with biochar. In addition, there are so many coconut plantations in Indonesia that need to be replanted so that improving soil quality to achieve the desired production is increasingly important. 

3. Corn Plantation

Efforts to increase food products need to be taken seriously, this can be done in two ways, first by expanding the land or making new rice paddy fields for production and the second by improving the quality of existing land so that productivity will increase. Biochar is very effective and efficient for the second method above. Besides being used as a human food source, corn is also used for animal feed. With the projection of the human population continuing to increase, the need for food either directly by consuming corn or indirectly from livestock such as meat and eggs. Poultry or chicken feed production ranks first of other animal feed production, or in the world almost half of the animal feed produced is chicken feed. Corn cobs and husks are agricultural waste that can be used for biochar production. Excess energy from the pyrolysis process can be used for drying corn and other advanced processes.

4. Rice Paddy Farming 

Rice or paddy is the staple food of most of the Indonesian population. The area of irrigated rice fields is decreasing throughout the year. This encourages the use of non-irrigated rice fields or dry land for the production of this rice. Biochar is able to improve the quality of dry land soils, such as in corn farming. Rice husks are rice paddy agricultural waste that can be used for biochar production. Excess energy from rice husk pyrolysis can be used for drying the rice paddy itself so that it becomes dry grain ready to be milled, or for other purposes. With the improvement of soil quality, rice productivity can be increased and it is not impossible that food self-sufficiency, especially rice, can be achieved, as has been achieved by Indonesia some time ago.

Jumat, 03 April 2020

Fertilizer Savings in Palm Oil Plantations with Biochar and Compost from Biogas Waste

Although Indonesia is the largest CPO producer in the world with an area of ​​approximately 13 million hectares of palm oil plantations, but it is estimated that less than 10% have a biogas facility from POME (Palm oil mill effluent). Whereas by utilizing POME for biogas production, besides being able to be converted into electricity or heat, it also produces organic fertilizer in the form of compost and liquid organic fertilizer. The compost can be used as fertilizer in oil palm plantations, where the cost of fertilizer for palm oil operations is the highest cost component. It is estimated that every 10,000 hectares costs approximately Rp. 35.75 billion (around US$ 2.25 million) for fertilizer and for more details, you can read here. The use of compost will certainly reduce the need for fertilizer.
Palm oil utilization scheme for optimizing CPO production
Besides that, solid wastes such as palm oil empty fruit bunch, fiber and palm oil frond are also very potential for the production of energy (electricity and heat) and biochar. Energy production in the form of electricity and heat is by burning pyrolysis byproducts in the form of syngas and biooil into the furnace to heat the boiler. And because the syngas and liquid fuels used in the furnace, so that the combustion process is more perfect and clean emissions. Steam generated from the boiler will then drive the steam turbine and generator so as to produce electricity. Low pressure steam from steam turbine is then used for sterilization or boiling the fresh fruit bunches (FFB). While biochar will be used together with compost and chemical fertilizers to make fertilizer effective in the palm oil plantations so that it becomes a slow release fertilizer. Costs for fertilization are also expected to be significantly reduced, for example by up to 50% by this way. Although biochar is not a fertilizer, it has a function that makes fertilizer use effectively because it holds fertilizer nutrients from leaching, for example from rain water, also maintains moisture and so on.
PKS loading for export in Indonesia
PKS (palm kernel shell) can even be sold or exported. This is because previously or in general the palm kernel shells used to fuel boilers with fiber, have been substituted with products from the pyrolysis process namely syngas and biooil. The need for palm kernel shells for both the domestic / local and export markets continues to increase all the time. Palm kernel shells / PKS are environmentally friendly fuels because they come from biomass so they are carbon neutral fuels. The use of PKS as a fuel is widely used by a number of industries starting as a heat source for the drying process such as spray dryers in detergent and ceramic plants, boilers in food industries such as soy sauce factory, to power plants such as in Japan, can be read in more detail here. In the world of biomass fuel commodity trading, especially in the international market, PKS is the main competitor of wood pellets. Although the specifications are not much different, the price of PKS is also cheaper because it comes from palm oil mill waste and does not need complex processing units such as wood pellets. And basically with the scheme of utilizing palm oil mill wastes as above, it will maximize the profit from the palm oil mill or CPO mill.

Selasa, 31 Maret 2020

Energy Independent With Pyrolysis

A community even in remote areas can be energy independent as long as there is an energy source in the area. Biomass energy sources from plants are energy sources that can be obtained almost anywhere. The plant can be planted as a source of raw materials for the production of energy needed. Heat and electricity energy is energy that mostly needed, in addition to energy or fuel for vehicles as a means of transportation. Heat energy is mainly needed for cooking while electrical energy for various purposes in life. Pyrolysis is a technology that can meet the energy needs as above. The diagram below explains the application of pyrolysis to meet these energy needs:

Charcoal is a solid fuel product from pyrolysis. Although solid fuels such as charcoal, are not as practical and easy as gas fuels, the use of charcoal for cooking fuel has many advantages including being safe because it will not explode, smokeless, odorless, has a high calorific value and is an environmentally friendly fuel. While firewood in addition to causing a lot of smoke, smell, low calorie value also interfere with health. Today there are also many countries in Africa that use charcoal for cooking fuel. To make it easier to use and store, the charcoal can be made into briquettes. While fuel for vehicles such as diesel oil and gasoline can be produced from biooil. Vehicles for transportation can operate in the presence of these fuels. The availability of petroleum in Indonesia, which is estimated to be 10 years away, needs to be anticipated and prepared from now on. The current low price of petroleum makes petroleum exports less attractive, especially for Indonesia, which is currently a net importer of petroleum.
Charcoal stoves are widely used in Africa
In the future era when electric vehicles are widely used, electricity production especially for battery charging is prioritized. The energy source for electric cars as environmentally friendly vehicles should also be from renewable energy sources, for more details, please read here. Biomass is a carbon neutral energy source so it does not increase the concentration of CO2 or greenhouse gases in the atmosphere. Woody biomass from the energy plantation is the ideal raw material for the pyrolysis feed. Multipurpose energy plantations are the best energy plantation for this, so that in addition to sustainable production, it also provides other benefits, for more details about multipurpose energy plantations can be read here. Remote areas, especially those with large lands, will have the potential to develop these energy plantations, so that an energy independent community or region can truly be formed and sustainable. Areas in surrounding the palm oil plantations can also utilize biomass waste from palm oil mills and plantations such as palm oil empty fruit bunches (EFB), fronds, etc. for the pyrolysis feed. Indonesia is the owner of the largest palm oil plantation in the world with an area of ​​around 13 million hectares and 1,000 palm oil mills. 

Selasa, 03 Maret 2020

Dessicated Coconut Factory and Continuous Pyrolysis

There are about 20 dessicated coconut factories operating in Indonesia or estimated to be more than 100 units worldwide. With an average capacity of 2 tons / hour, this dessicated coconut factory requires approximately 16,200 coconuts every hour. The byproducts produced are coconut shell and coconut water. Coconut shells produced are around 6 tons / hour and coconut water 4.2 tons / hour. The dessicated coconut plant needs electricity and heat to sterilize the coconut meat and drying the dessicated coconut. Energy in the form of electricity and heat can be met from the utilization of the coconut shell.
There are several technologies for utilizing these coconut shells so that products in the form of electricity and heat are obtained. The popular technology today is with a steam turbine boiler, with this technology the coconut shell is burned in a furnace and heats water in the boiler so that it produces steam to drive the turbine and then generate electricity through a generator. This technology is the same as in palm oil mills. In palm oil mill the fiber and part of the palm kernel shell (PKS) is used as fuel to produce electricity and steam is also used to sterilize fresh fruit bunches (FFB) before being processed into oil.
Another better technology is continuous pyrolysis. This in addition to producing electricity and heat also produces charcoal product. Coconut shell charcoal is high-quality charcoal and is much needed by a number of industries such as the briquette charcoal industry and activated carbon. In the pyrolysis technology the coconut shell is not burned directly, but is heated in a vacuum condition (absence of oxygen). Pyrolysis products such as syngas and biooil are used for electricity production and can also be heat, heat energy is also produced from the pyrolysis process itself which is exothermic, while charcoal is the main product of the pyrolysis process.

Rabu, 25 Desember 2019

Reviving the Integrated Coconut Industry Part 3

When continuous pyrolysis is used for processing coconut shells and producing charcoal and is not processed further into activated carbon, excess syngas and biooil can be used as energy sources for processing fruit flesh and coconut water. Fruit flesh and coconut water can be processed into a variety of products needed by the market. The production costs of various processed coconut products have become very competitive because energy costs are very minimal or even zero. In addition, energy needs can also be added from coconut fiber which is used as fuel as well. The energy source can be used for electricity or heat or both depending on industry needs.
If gliricidae is planted as a crop between coconut plantations, wood products will also be obtained. The wood can be used as raw material for wood pellets as an export commodity which is predicted to continue to increase demand in line with awareness of environmental problems and climate change. Gliricidae leaf waste can also be used as animal feed such as goats, sheep and cattle. Maintenance of gliricidae is very easy and planting patterns as intercropping with coconut plantations are also common in Sri Lanka. Land optimization can also be done by using land between coconut plantation and gliricidae as pasture fields such as goats, sheep and cattle and for beekeeping.
To make the business profitable and sustainable, professional management certainly needs to be applied in the business. Management of the upstream sector namely plantations and livestock should be separated from the downstream sector namely factory or plant as a processing unit. This is similar to the organization in the palm oil company which separates the plantation division from the factory or mill division. In addition to facilitating business operations, the business will become efficient and competitive.

Selasa, 10 Desember 2019

Reviving the Integrated Coconut Industries in Indonesia

The absence of a market causes the coconut industry to not develop, stagnate and even tend to die. Although various products can be produced from coconut fruit but with a small product uptake is not able to turn on the coconut industry. When the products that the demanded by market are already obtained, such as CPO in the palm oil industry, it is possible for the coconut industry to stretch and rise and be taken into account. Modernization of technology also needs to be done so that the coconut industry becomes a modern industry even though the production capacity is not as big as the palm oil industry. Another factor needed to revive the integrated coconut industry and this is almost the same experienced by all industries in general that is the availability of energy. So that to meet the energy needs, not all coconut fruit should be processed, but some are used to produce energy, for example coconut fiber, because the economic value is the lowest.

Activated carbon is a product that has a very good market potential and with continuous pyrolysis technology followed by activation, the product can be produced without the need for additional external energy. Thus the activated carbon plant can stand on its own using its coconut shell waste. But to get the coconut shell, someone must process the coconut fruit. Products such as VCO, dedicated coconut, and coconut milk can be the main products so that the processing of the coconut fruit. The coconut water can be processed into isotonic drinks or nata de coco. The use of coir-fired boilers (if in a palm oil mill, high efficient boilers only use the fiber) or even fronds and leaves can be used for electricity and steam production. Similar to operations in palm oil mills as well, namely electricity can be used to move a variety of mechanical equipment for processing coconut and steam as well as a source of heat, especially if the processing of the coconut fruit does need it.

With the above pattern, the coconut industry can be operated even though the location is in a remote area and there is no electricity network there, a place where coconut plantations are located. Indonesia as a seduction country of coconut islands with the plantation area of almost 4 million hectares and the widest in the world today or the equivalent of 1/3 of palm oil plantations should be also the leader in the world coconut industry. 

Jumat, 06 Desember 2019

Which is Better, Efficient Boiler or Pyrolysis System ?

Fiber and palm kernel shells (PKS) are palm oil mill solid wastes that are produced in CPO production in that mill. The amount of fiber and PKS waste is quite a lot, which is around 20% of each fresh fruit bunch (FFB) or almost the same as the CPO produced. A palm oil mill with a capacity of 60 tons / hour FFB can produce fiber as much as 8.1 tons per hour or 194.4 tons per day and PKS of 3.3 tons / hour per hour or 79.2 tons per day. And because both of them are waste, generally the utilization of the waste is not initially considered, including for use as fuel in boilers in palm oil mills for the production of electricity and steam. The use of fiber and PKS for boiler fuel generally uses 100% fiber and about 30% of the PKS. Under these conditions the remaining 70% of the PKS can be used for other things including being sold or even exported.

When the shell becomes a commercial commodity and demand is greater, palm oil mills replace their old inefficient boilers with new boilers that have a high level of efficiency. In this way, 100% of the PKS is no longer used to boiler fuel and only requires fiber as fuel. In this condition a paradigm shift in thinking begins to occur, that is when the solid waste is almost unnoticed and tends to be considered a problem, then it becomes an important part of earning additional income and it can even be estimated that if the shell is successfully sold then it is sufficient to cover the operational costs of the palm oil mill. Certainly something interesting if the production of CPO (crude palm oil) with 0% operational costs so that profit is increasingly attractive especially amid the recent decline in CPO prices.

Another thing that can be done is to use a pyrolysis unit, to run the boiler. With pyrolysis, not only fiber is used but also the empty fruit bunch (EFB). EFB are solid palm oil mill waste which to date have generally not been utilized. Besides producing energy, pyrolysis also produces products in the form of charcoal (biochar). Although charcoal (biochar) can also be used for energy sources, but in the business of palm oil companies the use of biochar for plantations can be more compatible. The use of biochar in palm oil plantations is mainly to  fertilizer saving, which is one of the major cost components (around 30%) in the CPO production business. With an area of ​​20 thousand hectares of oil palm plantations, fertilizer costs are estimated to reach Rp. 71.50 billion (around US$ 5 million) per year or Rp. 35.75 billion (around US$ 2.5 million) per year for every 10,000 hectares, for more details, please read here. Palm oil mills with big vision certainly try to maximize their potential with the aim of maximizing profits from upstream to downstream production activities. With Biochar can also target the increase in productivity of FFB, for more details, please read here.

The application of biochar will be easier to do in Indonesia than in Malaysia, this is because almost all palm oil mills in Indonesia also have palm oil plantations while in Malaysia the mills generally do not have their own palm oil plantations. The palm oil industry also has an important role for the two countries because Indonesia and Malaysia are the largest CPO producers and owners of biggest palm oil plantations in the world today. The palm oil industry contributes around 7% of Malaysian GDP and 3% of Indonesian GDP, so its role cannot be ignored. Both with pyrolysis and high efficient boilers, biomass waste can be used as an energy source and 100% of the PKS can be commercialized, but with pyrolysis is better because waste of EFB can also be processed, there are biochar product (while only ash if only with regular combustion) for Fertilizers saving in the palm oil plantations and the exhaust gases from the palm oil mill boilers are also clean because they burn gas (syngas) produced from the pyrolysis process.

Sabtu, 09 November 2019

Food Energy Water for the World Community

"There will be no doomsday, until wealth has been piled up and abundant, until a man goes everywhere carrying his zakat but he does not get anyone who is willing to accept his zakat. And so that the Arab lands become fertile again prosperous with meadows and rivers "(HR.Muslim).
The earth will once again prosper before doomsday. In general gardens and forests like that also cause springs to appear (QS 36: 34) which in time will flow into the rivers (QS 19: 24-25) and also be your pleasure and your animals ( QS 79: 31). Basically, the earth is very sufficient to meet human needs, especially in 3 main things namely food, energy and water. In the era of bioeconomy that is believed to be in sight and we will soon experience it, a number of technologies will be developed to support these three main sectors in a sustainable manner. The emphasis on something that is sustainable  is increasingly emphasized to increasingly abandon or not at all use fossil sources (fossil free), especially in the energy sector. It is this aspect of sustainability that clearly distinguishes the fossil economy era from bioeconomy.


The Concept of Energy Plantation and Verticulture 
The tropics will be excellent for developing bioeconomy because of the availability of sunshine throughout the year. This tropical region will compete for entrepreneurs engaged in this sector, such as the African continent and Indonesia. The availability of vast land in the area is a key factor in the development of energy plantations. Energy is a vital need for human kind today, especially to drive economic sectors. With energy plantations, massive energy needs can be met. Fast rotation and coppice plants such as calliandra and gliricidae are the mainstay of energy plantations. In addition to the energy plantation will be able to conserve water, livestock business can also be developed by utilizing leaves waste from the energy plantations. Sheep, goat or cattle farms are ideal for utilizing leaves waste from the energy plantations. Honey bee keeping can also be developed by utilizing flowers from the energy plantation.
verticulture with skyscrapers

Calliandra Energy Plantation
Tall buildings were built not even for human habitation, but as agricultural land for food crops (verticulture). Verticulture farming is to meet food needs and facilitate its management. Modern farming techniques are used to maximize the quality and productivity of the farm. To support the success of agriculture, IOT (internet of things) with a number of sensors that can be read online is an integral part of agricultural management. The effectiveness and efficiency of farming can be increased rapidly so that high productivity and quality can be achieved, while large lands mainly for energy plantations. Biochar which can be used to improve the effectiveness and efficiency of fertilization can be applied to verticulture farming.  Apart from being made compost agricultural wastes can also be partially converted into biochar. For large capacity biochar production, the continuous pyrolysis units are the best choice. Compost and biochar production also makes the farming practices zero waste. Even with continuous pyrolysis technology, in addition to biochar, heat and electricity can also be produced. Liquid fuel namely biooil, is also produced from the continuous pyrolysis technology.
With the majority of land used for energy plantations, the energy needs, InshaAllah, can be fulfilled even the meat needs of the livestock business, as well as food production with verticulture. The ideal concept, if it can be implemented, should be a solution to the problems of life today. The concept can be implemented if humanity realizes the importance of the program and supports it. Technically, this can be done, and some have done it even on a smaller scale and it has not been fully integrated.
The coming era of bioeconomy should also be in line with the improvement of the economic system that gives a sense of justice to the world's population. With the current economic model it takes 800 years for the bottom billion people to reach 10% of global income. As a result of the current liberalism and capitalism, the richest 10% control 85% of global wealth. The three richest people in the world have assets of more than 47 GDP, the lowest gross GDP. 1% of the richest people own more than 50% of the world's wealth. This huge inequality should be overcome immediately with a equitable and prosperous economy. The transition from fossil economy to bioeconomy can be both an medium and a momentum for improving the economic system. The tropics, which were previously of a minor economic role, should have been increased and taken into account or even become a major player in the bioeconomy era.

Kamis, 21 Februari 2019

EFB Biochar and Fertilizer Savings in Palm Oil Plantations

High palm oil plantation productivity and high oil yield has always been a goal in the palm oil business. The nutrient estimates needed to produce 25 tons of FFB / ha / year were 192 N, 11 P, 209 K, 36 Mg, and 71 Ca in kg / ha / year. With the production of 25 tons of FFB / ha / year palm oil or CPO crude will produce around 6.5 tons (25% of FFB). Analogy in the field of animal husbandry where the feed component holds 75% of production costs or is the highest cost component, as well as fertilizer, especially in palm oil plantations. Fertilizer is the most expensive cost or 60% of total maintenance costs. To achieve this productivity, the calculation practically of the need is more or less as follows: an afdeling with an area of ​​1,000 hectares with 1 hectare consisting of 143 trees, so there are 143,000 trees of palm oil. If the dose per tree is 2.5 kg, then the fertilizer needs are 357,500 kg (357.5 tons), with the price of non-subsidized chemical fertilizers for example Rp 10,000 / kg, the cost incurred is 3,575,000,000 (Rp. 3,575 billion or US$ 238,333). If an area of ​​10,000 hectares means fertilizer needs of Rp. 35.75 billion (US$ 2,383,33), whereas if the oil palm plantation is 20,000 hectares, it will reach Rp. 71.50 billion (US$ 4,766,667). Of course an amount that is not small.
The question is what efforts can be made to reduce fertilizer costs but increase palm productivity. One contradictory thing seems to be because it reduces the supply of fertilizer but expects high productivity. This is where we need to examine and explore the facts that occur in the field. With a tropical climate and high rainfall, it makes large leached fertilizers. A condition, for example in hilly and bumpy areas, when the rain falls, the fertilizer that is washed is very large, even in vain fertilization is done because it is not absorbed by the palm trees as the target. The high level of leaching from the use of fertilizers by rainwater makes only available a small amount of available fertilizer in real terms or a number of analyzes said averaging only 50%. With the available fertilizers there are only a few that are also automatically absorbed by the palm trees. When for example washing (leaching) can be reduced by only 30%, it means that the fertilizer that is still available becomes 70%, so that the fertilizer is absorbed more and more and the productivity of the palm oil fruit also increases.
The initial stage that can be done is the cost of the same fertilizer but the productivity of the palm oil fruit can increase up to for example 30%. Furthermore, if this can be achieved, fertilizer consumption will be reduced for example up to 30% but palm oil productivity can be maintained at that level. This is possible when biochar has become a microbial colony and the quality of the soil increases so that uptake of fertilizer is maximal. Biochar is one of the media that can be used for this. An empty fruit bunch that is widely available in palm oil mills and is generally not utilized as a raw material for biochar production. A palm oil mill with a production capacity of 60 tons / hour FFB will produce EFB 13.2 tons / hour so that if the palm oil mill operates 20 hours / day the EFB produced 264 tons / day. The production of biochar with pyrolysis can also produce liquid smoke which can also be used as fertilizer.
Why can biochar be used to increase palm oil productivity and even reduce fertilizer consumption? This is because biochar with its pores with a surface area of ​​about 200 m2 / gram can hold the fertilizer from washing, maintain moisture and many soil microbes that can live in these pores thus improving the physical and chemical properties of the soil. Biochar can last up to hundreds of years in the soil so it does not need to be added every year when the amount is sufficient. Biochar implementation can be started from small scale to massive scale. To process empty fruit bunches (EFB)  in the palm oil mill into biochar, a continuous pyrolysis equiment is needed, to be more clearly read here. To monitor the effectiveness of biochar on oil palm plantations today can use internet technology or IoT (Internet of Things) and for more details can be read here and here.

Selasa, 06 November 2018

Advantages of Municipal Waste Processing by Pyrolysis Compared to Fluidized Bed Combustion, Incenerator, Hydrothermal Carbonization (HTC) and Gasification

Municipal waste is always a problem everywhere, especially in big cities. With proper processing, the municipal waste should be an attractive opportunity that has great potential. Municipal waste that amounts to thousands of tons per day needs fast handling so that it does not cause problems, moreover the waste management should require cheap investment and even benefit the waste management party. The question is what is the waste processed into, in what ways and where can it be used? Let's compare waste processing with a thermal route with various existing technologies, namely fluidized bed combustion, incenerator, hydrothermal carbonization (HTC) and gasification. Why are only thermal routes compared? This is because if the biological route takes a long processing time and requires a large place. In short, the biological route is not effective in overcoming the problem of municipal waste.
Basically all the thermal technologies mentioned above can be used to process municipal waste, only how effective and how economically profitable it is the topic of discussion. It really depends on the condition of each region, for example a number of major cities in Indonesia have oversupply electricity production, so that if added to electricity production it will meaningless and not absorbed. Another factor is the investment needed for waste processing equipment, which is generally still very expensive. Based on this, a solution is needed that can be suitable for a particular region. In fluidized bed combustion technology, incenerator and gasification in general is to produce electricity, even though electricity has also been oversupplied so it is not an option.
With HTC technology will produce the main product in the form of carbon material or charcoal, but HTC equipment investment is still expensive. Well, of all the thermal route technologies, continuous pyrolysis is the best choice because it produces the main product in the form of charcoal. Charcoal with the main content of carbon can be used for fuel, especially boilers in the industry. Boilers that have been using coal even from other fossil energy such as gas and petroleum can switch to using charcoal produced from municipal waste. The use of charcoal from municipal waste will certainly reduce the use of coal in particular and fossil energy in general. And the most important thing is of course to overcome the environmental problems caused by the garbage. The continuous pyrolysis units are also not centralized in one place, but can be spread more to various locations on a medium scale, for example each location to process municipal waste with a capacity of 200 tons / day. If let's say Jakarta produces 5000 tons / day of municipal solid waste every day, 25 continuous pyrolysis units are needed. To save transportation and facilitate storage and use, the charcoal product can be made of charcoal pellets or charcoal briquettes.
With the use of continuous pyrolysis, InsyaAllah the problem of municipal waste in big cities can be overcome while providing economic benefits (read: profits) for the manager companies. While the garbage problem continues to haunt and has never been resolved to this day, so an effective and solution-oriented innovation is needed to overcome it. Jakarta is the largest city in Indonesia surrounded by many industrial estates and boilers are one of the important equipment widely used by these industries. If Jakarta's waste is processed into charcoal, it can replace the fuel for the boilers. Steam power plants can also use charcoal for their fuel, for example with cofiring. 

Sabtu, 06 Oktober 2018

Modernization Charcoal Production with Continuous Pyrolysis

Charcoal production and charcoal marketing have not been treated by strict rules such as wood pellets. This is mainly due to the large number of charcoal producers, with a small average production and traditional production technology. In addition, the market or buyer also does not require large volumes and long-term contracts. The quality factor remains an important standard, especially for the export market. But it could be that more stringent rules will also apply to production and marketing, given the potential damage caused. The low conversion of traditional charcoal kiln, which is an average of 15%, makes the need for wood raw materials extra, so that to produce 1 million tons of raw materials is needed about 6.5 million tons of wood. The approach to using efficient technology is increasingly urgent especially to serve large and continuous needs. Pyrolysis or continuous carbonization is the solution to this, with a conversion rate to charcoal reaching 30% or almost one third. With this efficient technology, only 3 million tons of wood is needed, or only half that means saving about 3 million tons of wood raw material.

Another motivation for using continuous pyrolysis technology is the high efficiency of energy savings that can be obtained. In charcoal production traditionally more than 60% of energy is lost during the production process. This can be illustrated in making charcoal from coconut shells. Conversion from raw materials to charcoal is only 15-25% in the process of traditional carbonization / pyrolysis. For example, we take a conversion of 25% (the best estimate), with a raw material of 10 tons of coconut shell, then 2.5 tons of charcoal are produced. Coconut shell with a heating value of around 4,500 kcal / kg, meaning that 10 tons of raw material is 45,000,000 kcal. While coconut shell charcoal with a heating value of around 8,000 kcal / kg, then 2.5 tons of charcoal will have a heating value of 20,000,000 kcal / kg. Based on these calculations more than 50% of energy is lost or is only wasted, ie 25,000,000 kcal. If the conversion to charcoal is lower or 20%, the energy loss is even greater, namely 29,000,000 kcal or more than 60%. Of course it is very inefficient and a lot of energy waste.
Whereas in the continuous pyrolysis process almost all energy can be utilized. Syngas and biooil are two types of by-products from pyrolysis that can be used as energy sources. Based on this, not only is conversion increasing, resulting in a reduction in raw materials which are also used by side products that can be used as energy sources. At present there are very few people who are thinking of utilizing the energy lost during the carbonization / pyrolysis process, this is because most people only think about how to increase the conversion to the charcoal. The loss of energy during the carbonization process is unknown or not realized by mostly charcoal producers in particular.
The use of 'lost energy' when the carbonization / pyrolysis process becomes another form of energy is certainly very good and adds value to its benefits. Electricity and heat are the two most needed forms of energy, so the conversion of 'lost energy' or pyrolysis / carbonization byproducts to become electric and heat energy is the best use scenario today. A number of regions or regions in the world still have low levels of electricity access. Africa, for example, on average has a low level of access to electricity, which is less than 30%, whereas in this region is the largest charcoal producer in the world which reaches 50% of global global production. By using continuous pyrolysis, this area, in addition to being the largest charcoal producer and even with a higher conversion, will also have access to electricity with the construction of a power plant fueled by the pyrolysis / carbonization by-products.
Charcoal is an energy product from biomass processing, especially wood. Wood charcoal has been known for a long time and is produced in a number of places. The process of producing wood charcoal is generally traditional, takes a long time and the quality is not uniform. According to FAO, global wood charcoal production in 2015 was recorded at more than 50 million tons and about half of it was produced in Africa. That means with the assumption that the conversion rate of 15% requires biomass, especially wood as raw material, as much as 333 million tons every year with 167 million tons coming from Africa. If the conversion rate to charcoal can be increased to 30% or two times, then the need for raw materials will decrease drastically or only half, namely 167 million tons globally and 83.5 million tons from Africa. What a very significant savings effort.
Every year Europe imports 1 million tons of charcoal, as well as Saudi Arabia and Middle Eastern countries import more than 1 million tons of charcoal. Saudi Arabia and the Middle East mainly use charcoal to roast lamb, a favorite food there. The use of charcoal in general is mostly the household sector with retail distribution. In addition charcoal is also used for metallurgy, agriculture (biochar) and activated charcoal (activated carbon) raw materials.

Rabu, 29 Agustus 2018

Continuous Pyrolysis for the Activated Carbon Production Part 2

Activated carbon production can be done in two ways, namely physical and chemical activation. Both physical and chemical activation require pyrolysis (carbonization) in the activated carbon production process. The difference about the sequence, in the use of the pyrolysis unit (carbonization) in the activation process is the physical activation of the pyrolysis unit (carbonization) for charcoal production which is then activated using steam or CO2, while the chemical activation of the pyrolysis unit (carbonization) is used for charcoal production from raw materials previously chemically activated like with H3PO4, ZnCl2, KOH. Other differences in physical activation using temperature for activation are higher, namely the range of 800-1000 C while the chemical activation uses a lower temperature, which is around 150-200 C only. Activated carbon products or yield that are produced chemically are more than those produced physically, which are around 3: 1.
The advantage of using a continuous pyrolysis unit for activated carbon production primarily increases the efficiency of the production process and the quality of the products. Efficiency is very important for a production activity. The efficiency of the production process is derived from the use of pyrolysis by-products that can be used to produce heat and even electricity. As an example of physical activation that uses a high operating temperature, excess syngas can be used to reach that temperature. Biooil produced can produce steam. Charcoal products produced from a continuous pyrolysis (carbonization) unit also do not need to be cooled and can be activated directly, so that their energy needs can be minimized. So that the activated carbon production should be an integration between the pyrolysis unit (carbonization) and its activation unit.

While in the chemical activation process, pyrolysis (carbonization) byproducts can also be used for the production of activated carbon. The activation process that uses a temperature that is quite low at 150-200 C can use excess heat from the pyrolysis process for its heat source. While excess syngas can be used to produce electricity for the production of activated carbon or sold to other parties such as other industries or PLN. Biooil can also be used for burner fuel or purified again for the production of vehicle fuel and so on. Continuous use of pyrolysis (carbonization) will also produce high quality, standard and stable product quality, this is because the operating conditions in the unit can be easily and accurately controlled, such as heating rate, residence time and temperature.


While in charcoal production (carbonization) traditionally operating in batches, in addition to a lot of energy loss also produces a lot of smoke which causes air pollution. The loss of energy during the traditional process of carbonization (pyrolysis) can even reach more than 60% meaning that more than half of the energy is only wasted, for more details can be read here. Of course this is very unfortunate, the activated carbon plant which should be able to operate very efficiently and economically, becomes wasteful and expensive. The effect of this is of course on the depletion of the profits obtained by the business. Within a short time it is expected that activated carbon factories will use continuous pyrolysis (carbonization) to increase efficiency, environmental and economic aspects.

Continuous Pyrolysis for Palm Oil Mills

A number of regions have been over-supplied with electricity so it is not possible to add or build new power plants. Making a new plant will only be in vain because the electricity production cannot be utilized or absorbed by the user. Based on this, electricity production in a number of areas must be limited and diversified into other products needed. These other products are products whose needs are still not met. Another thing that can be done is to increase the efficiency of a production process. When the efficiency of a production process is improved and produces the products needed, of course the business benefits increase. Besides that, when all the waste can be processed, it becomes a production unit that is zero waste and environmentally friendly.
Palm oil mills are very numerous in Indonesia and Malaysia, the number reaches more than 1000 units, while Thailand also begins to follow the planting of oil palm. At present some of the palm oil mill effluents have not been processed such as empty palm bunches, palm shells and fronds. The palm oil mill that has been operating can be increased efficiency and the production of by-products that provide additional income. This can be done by using a continuous pyrolysis unit for both electrical and heat energy sources and the production of various by-products in the form of charcoal, biooil and biomass vinegar. The three by-products can be sold or marketed and become an additional income for the palm oil mill which is quite attractive.
Conventional Energy System in Palm Oil Mill

Improved Palm Oil Mill with Continous Pyrolysis System
Palm oil mills also do not need to be bothered with the problem of waste, especially solid waste if everything can be processed and very profitable. Meanwhile, from the environmental aspect of a palm oil mill that is zero waste and environmentally friendly, it is certainly the dream of all the palm oil mill owners. The community and the surrounding environment which is not disturbed by the palm oil mill that is because of its pollution is also a condition desired by the palm oil entrepreneurs. By using the continuous pyrolysis, the air pollution generated is very minimal or far from the required threshold, so that the environment and the surrounding community can be accepted. If the palm oil mills have used continuous pyrolysis, it will also be economically attractive.
Charcoal produced also has many benefits. Technically, charcoal is a stable fuel so it is easy to store and does not decay or is eaten by termites. Charcoal can be used for energy sources directly easily, or converted to other fuels, for example converted into liquid or gas fuel. The condition of fossil fuels, especially petroleum which is increasingly depleted, demands the diversification of energy, such as Indonesia which is predicted to run out of oil in 10 years or in 2028. Likewise, biooil can be used immediately, or upgraded to better fuels, such as vehicle fuel. While biomass vinegar can be used for fertilizer, biopesticides and upgraded to biophenol and wood adhesive.