Tampilkan postingan dengan label pyrolylisis. Tampilkan semua postingan
Tampilkan postingan dengan label pyrolylisis. Tampilkan semua postingan

Senin, 31 Oktober 2011

Why Use Pyrolysis to MSW Treatment?


The main difference between the pyrolysis, gasification and incineration: the amount of oxygen that is supplied to thermal reactors. Pyrolysis has advantages in producing gas or oil products from waste that can be used as fuel for its process of pyrolysis.

Quantitatively differences between the pyrolysis, gasification and combustion: based on the needs of the air needed during the process, i.e. as follows
-If the
amount of air: fuel (AFR, air-fuel ratio) = 0, then the process is called pyrolysis.
-If the AFR <1.5 then the process is called gasification.
-If the AFR> 1.5 then it is called the combustion process


Pyrolysis have a number of advantages are as follows:
-Lower temperature process (400-800 C) so the smaller the investment costs
-Flue-gas emissions below the required threshold.
-All the pyrolysis products have economic value.
So that the sustainability of MSW processing is not only dependent on the tipping fee, but rather on the sale of the pyrolysis products.

-Pyrolysis can adjust to the type of feedstock such as pyrolysis of plastic will result in major product syn crude oil, pyrolysis of scrap tires will be produced also syn crude oil, carbon black and syn gas, and so other feedstock.
The use according to type of feedstock will increase the economic value of the resulting product significantly. In process aspects this will be considered against the availability of feedstock and selling value of products produced.

Institute of Applied Energy (Tokyo) published in 2004 an analysis of stoker incinerator and pyrolysis plants operating under the same conditions. The analysis revealed that a conventional stoker grate incinerator with a steam turbine has no performance advantage over a pyrolysis plant at any scale.

Rabu, 03 Agustus 2011

GENERAL OVERVIEW OF CHARCOAL PROPERTIES


The quality of charcoal depends on both wood species used as a raw material and of the proper application of the carbonisation technology. Charcoal produced from hardwood like beech or oak is heavy and strong. Charcoal made from softwood, on the other hand, is soft and light. The density of beech charcoal is 0.45 t/m3a, that of pine charcoal 0.28 t/m3. The bulk density of charcoal does not only depend on the apparent density but also on the size distribution, and is in the range of 180-220 kg/m3. The gross calorific value (GCV) is usually in the range of 29-33 GJ/t.

Good quality charcoal was characterized by Chaturvedi as follows: “[It] retains the grain of the wood; it is jet black in colour with a shining luster in a fresh cross-section. It is sonorous with a metallic ring, and does not crush, nor does it soil the fingers. It floats in water, is a bad conductor of heat and electricity, and burns without flame.”

Charcoal intended for barbecue typically contains 20-30%mass of volatiles, whereas metallurgical charcoal often contains 10-15%m (or even less) volatile matter. Hence, taking ash contents into account, the fixed carbon content is 78-90 %mass.

This carbon is a finely crystalline and practically free of sulfur. Charcoal also contains volatiles that may escape at elevated temperatures (obviously above the charcoal manufacturing process of approximately 400 C), consisting of hydrogen, oxygen, and nitrogen. Ash content is approximately 1.5-5%mass. Charcoal also contains water, the amount being dependent on ambient temperature and humidity. Moisture content varies between 5 %m-8 %mass.

Standards for barbecue charcoal and charcoal briquettes, according to EN 1860.

Charcoal: Carbon (fix), dry basis > 75% Ash, dry basis < 8% Moisture, wet basis < 8% Granulation [d > 80 mm] < 10% [d > 20 mm] > 80% [0 mm < d < 10 mm] < 7% Bulk density > 130 kg/m3

Charcoal briquettes: Carbon (fix), dry basis > 60% Ash, dry basis < 18% Moisture, wet basis < 8% Granulation Suitable for BBQ equipment of EN 1860-1 [d < 20 mm] < 10% Binder Combustion gases cause no health hazards in contact with food. Binder is of food grade quality.

Source : INDUSTRIAL CHARCOAL PRODUCTION, A Development of a sustainable charcoal industry,Presented by FAO

Selasa, 28 Desember 2010

You want to produce large-scale wood pellet? I think biochar would be better and wiser



It is a problem as old as commerce. When supply exceeds demand, prices fall. When supply is increased even further, weak prices fall further and take out the higher cost producers.

This is exactly what is happening in the pellet market in Europe, especially to utility companies. Ostensibly, total demand for wood pellets from power companies across Europe is close to 5 million tonnes. However, supply for this market from
Europe (including Scandinavia) and North America alone is well in excess of this number.

To put this in context, global demand for wood pellets is approximately 12 million tonnes, of which 5 million tonnes is from the commercial sector and 7 million tonnes from the residential sector. The most current data is for 2009, and sourced
from Hawkins Wright and RISI.

To make matter worse, various pellet suppliers are announcing with glee that they are about to build the biggest, fastest or most efficient pellet manufacturing plants. Yet prices are seriously low. If these mills cannot turn a profit at the very low industrial pellet prices in Europe (+/-EURCif118.10/t), then the investments to build them will be risky.

Combined commercial and residential demand in Europe accounts for just over 75 per cent of the global market for wood pellets. North America follows with close to 20 per cent and the other regions make up less than 5 per cent. Therefore, the overwhelming demand is in Europe and North America. Both regions are facing extreme financial challenges.

While global demand for wood pellets in 2009 was close to 12 million tonnes, supply capacity is currently more than 14.5 million tonnes, meaning that more than 17 per cent is under utilised.

The forecast figures for 2015 do not make pragmatists joyful. Demand is projected to increase by almost 28 per cent per annum, to reach 32 million tonnes. Production in 2015 is estimated to be 35 million tonnes with a capacity of 41 million tonnes. Therefore, production is going to be in the region of 9 per cent higher than demand, and around15 per cent of capacity is going to be under-utilised. (Report of Carbon Edge, Australia December 2010).

So if you still want to force yourself to produce wood pellets a large scale? Think with logic and realistic, then decide it.


Biochar is a wise choice, for several reasons:

1. Environmental problems of organic wastes pollution that need immediate treatment and global environmental problems of climate change and global warming so that the required real solution to this. Biochar as one of the best choices by absorbing CO2 from the atmosphere or carbon-negative strategy to prevent global warming.

2. Food security. Declining soil quality will have an impact in declining crop productivity. Biochar as a carbon-rich material that will improve soil quality and increase crop production. For this case so that the needs of biochar is large and ever-increasing.

The world’s total agricultural area is about 5 billion hectares, one billion more than for forests. Of this, about 1.5 billion ha (30 percent) is arable land and land under permanent crops,and the remaining 3.5 billion ha is permanent pasture. In addition, there are also up to 2.5 billion ha of rangelands.

Soils naturally contain large amounts of carbon, derived primarily from decayed vegetation. But the last few decades have seen a dramatic loss of top soil, soil carbon and inherent soil fertility due to the spread of unecological farming methods, and the one-way traic of food supplies from rural areas to cities without the return of carbon back to the farmland where the food was grown. A recent report by the FAO states: “Most agricultural soils have lost anything between 30 and 75 percent of their antecedent soil organic carbon pool, or a total of 30 to 40 tC/ha. Carbon loss from soils is mainly associated with soil degradation . . . and has amounted to 78 +/- 12 Gt since 1850. Thus, the present organic carbon pool in agricultural soils is much lower than their potential capacity.


3. Renewable energy. Our pyrolysis plant will produce biooil and syngas as side products. Both can be used for energy and green chemical applications. Excess syngas for energy applications for the capacity of 200 TPD INPUT plant will produce at least 5 MW of electricity.

4. Activated carbon. Biochar or charcoal can be improved quality into activated carbon. The high water pollution in major cities and around mining areas increase the need for activated carbon. Many purification industries also require large of the activated carbon to improve the quality of their products.


Check out this SlideShare Presentation:
Armed with the practical, realistic and reliable technology, we are ready to become your partner for changing your biomass waste into money.

Jumat, 16 April 2010

Torrefaction is The Most Efficient Way of Harnessing Biomass Energy and especially the best solution for EFB problem in SE Asian POMs


Taiwan's Minister Stephen Shu-hung Shen has suggestion that Torrefaction is The Most Efficient Way of Harnessing Biomass Energy . He explain it as part of an effort to gain participation in the United Nation Framework Convention on Climate Change. Torrefaction is the roasting of wood or other biomass to create a product that (1) has increased energy density; (2) has characteristics that make it easy to handle and transport; and (3) is practical to co-fire in existing coal plants.

Then, Portland General Electric submitted a letter to the Oregon Public Utilities Commission laying out a plan to either shut down the Boardman coal-fired power plant or discontinue use of coal as the fuel source for that plant. Portland General Electric's letter follows a November 5, 2009 Integrated Resource Plan in which the utility recommended the installation of $520 million to $560 million of emissions control retrofits to comply with new rules from the state Environmental Quality Commission (EQC).

Portland General Electric then suggested that they are considering torrefied wood as a fuel source:
PGE spokesman Steve Corson said the company is keeping a close eye on research around a biomass technology called “torrefaction.”
The end product could be a direct substitute for coal, allowing the Boardman plant to continue operating but using a renewable and carbon-friendly feedstock. Torrefaction removes moisture and low energy volatiles from the roasted wood, producing a product that is more energy dense (more energy per unit of weight) than wood and almost as dense as coal. The significance of this increased energy density is shown in the following comparison.

The other benefit of torrified wood is more economical to transport than units of green wood or wood pellets with similar total energy content. Torrefied wood is also more durable than green wood or wood pellets because it (1) is moisture resistant and can be shipped in bulk open containers and stored uncovered and handled in a manner similar to coal, and (2) can withstand 1.5 to 2 times the crushing force of wood pellets. Thus, when compared to green wood or wood pellets, torrefied wood can be transported cheaper, farther and with less environmental impact from transportation operations.

Grinds Similar to Coal. Torrefied material grinds similar to coal. It can be ground in many existing facilities, easing its integration into existing coal facilities. By comparison, wood pellets are difficult to grind, effectively prohibiting their use in most existing coal plants. Burns Similar to Coal. While torrefied wood is a renewable, carbon neutral resource, it burns similar to coal. Certain volatiles and other compounds (hemi-cellulose material contained in wood) are largely eliminated in the torrefaction process, making torrefied materials easier to co-fire in power plants originally designed to use only coal.

This change in the chemical composition of the wood not only increases the energy density, but also improves the manner in which the wood is burned in a coal gasifier, thus permitting more of the energy to be converted into electricity. This makes the energy content of torrefied wood more valuable. By comparison, wood pellets contain volatile organic compounds that release smoke when burned. These volatiles can create slag or ash in existing coal power plants and restrict the use of wood pellets in such plants.

The integration of torrefied wood into existing coal power plants requires no upfront capital investment by the coal plant operator. Thus, torrefied wood provides existing coal burning utilities the ability to produce green energy with no upfront cost. Torrefied wood is a renewable resource under current EU law and the American Clean Energy and Security Act of 2009 (as passed by the House of Representatives earlier this year and currently pending in the Senate). As a result, coal plant operators can obtain renewable energy and/or carbon trading credits by incorporating torrefied wood into their production process.

JFE believe that torrefied wood presents current economically viable opportunities for large scale production of renewable energy. Indonesian has a renewable energy source with huge potential and abundant, but their utilization is still very limited.The first sequence is solar, then the second is biomass and geothermal in the third (please refer table below). Abundant biomass waste and will decompose (fermented to produce methane) causes environmental problems need to be addressed immediately.

Indonesia and Malaysia is the biggest CPO producer in the world with more than 500 Palm Oil Mills. There are number of solid and liquid waste streams from the Palm Oil Mill processes. Solid wastes include empty fruit bunch (EFB), fiber and shell with liquid wastes including oil sludge and Palm Oil Mill Effluent (POME).
Based on a PALM OIL MILL capacity 30 T FFB / hour, the following solid waste
streams are produced:
EFB: 6.9 T/hour or 165.6 T/day
Fiber: 3.9 T/hour or 93.6 T/day
Shell: 1.95 T/hour or 46.8 T/day.

The key to the success of the JFBC systems is the simplicity of design and ease of operations. Once the plant is up to a specific temperature using fuel oil, simply load the feed bin, keep an eye on the temperature and charcoal, bio-oil and biogas comes out, each into its own holding tanks.

The heart of the JFBC patent pending system is the air absent retorts. In a continuous process, raw organic material of any kind is passed through the retorts and cooked into marketable products. While some of the biogas is used to fuel its own process, on site gas turbines or steam boilers can be fueled by the same gas. Variable speed drives give the operator total control on product quality by altering the residence time of the feed stock.

The operator can also vary the percentage split between the bio-oil and charcoal by changing the temperature. Higher temp will yield more oil while lower will get you more charcoal or torrified Wood.JFBS Pyrolysis technology can produce biochar (charcoal) or torrified wood. Priority to processing it depends on many consideration especially yielded added value and availability of raw material.