Tampilkan postingan dengan label carbon sink. Tampilkan semua postingan
Tampilkan postingan dengan label carbon sink. Tampilkan semua postingan

Senin, 10 Maret 2025

Biochar for Energy Plantations

The low productivity of wood from energy plantations is one of the obstacles to the development of energy plantations. Although energy plantation plants such as calliandra can grow on marginal or critical lands, the quality of the soil affects the productivity of the wood produced. This makes it important to improve the quality of the soil of these energy plantations so that they can produce optimal plant productivity. Biochar can be an effective solution for this. Biomass waste that pollutes the environment can be used for biochar production or wood products from these energy plantations can be partly used for biochar production.

Biochar and energy plantations are two positive things for climate solutions. Energy plantations for the production of carbon neutral biomass fuels such as wood pellets, while biochar is to improve soil quality, save fertilizer use and so on and as carbon sequestration / carbon sinks that are carbon negative. The biochar solution for energy plantations will maximize CO2 reduction and sustainability efforts. The vastness of energy plantations is because they are pursuing the target of producing biomass fuel quantities which are comparable to land use and also comparable to the use of biochar. This is so that industrial-scale biochar production is needed to support this, read more details here. The more damaged the land or critical lands are, the greater the need for biochar. And the production of large-capacity biochar has the opportunity to get carbon credit or BCR (Biochar Carbon Removal) credit which can be a driving force for the growth of biochar industries. 

Critical and marginal lands should be prioritized as energy plantation lands. This will not only restore land quality but will also provide added value to land use and efforts to prevent disasters. Land legality is also an important concern. Land must be clear and clean, meaning free from disputes so that it does not cause problems in the future. Furthermore, industrial forest plantation land (HTI) which is indeed in accordance with its designation as a production forest can also be used for energy plantation land. How damaged or degraded the land is will determine how much biochar is used. Meanwhile, the creation of energy plantations from land conversion from protected forests / conservation forests to production forests should be prohibited, because instead of saving the environment, it will actually have a greater negative impact on the environment. So opening forest land (deforestation) for energy plantations is not recommended at all.

Biochar and Food & Energy Security

As the population increases, so does the need for food and energy. This is why food and energy production must also be increased. Increasing food production is closely related to the quality and quantity of land. However, although the quantity of land is very large, its quality tends to decline so that plant productivity automatically also decreases. The decline in land quality or land damage occurs on very large areas of land up to millions of hectares. With the area of ​​sub-optimal and degraded lands reaching hundreds of millions of hectares consisting of 122.1 million hectares of dry land; 8 million hectares of post-mining land; 24.3 million hectares of critical land; a total of around 154.4 million ha, it can be said that the potential loss of food products also reaches millions of tons. Meanwhile, damaged land will be further damaged if no repair efforts are made. Efforts to upgrade or improve the quality of this land should be an important priority in efforts to achieve food and energy security.

Biochar application is a solution for improving these lands. Raw materials for biochar production are also very abundant, including dry palm oil EFB of around 30 million tons/year, bagasse of 2 million tons/year, corn cobs of 5 million tons/year, cassava stalks of 3 million tons/year, waste wood of 50 million tons/year, rice husks of 15 million tons/year, cocoa shells and so on. With the application of biochar, agricultural productivity can increase by an average of 20% or even up to 100%. If applied on a macro or national scale, say with a 20% increase in production, for example, rice production will increase to 36 million tons/year from the previous 30 million tons/year, corn will increase to 18 million tons/year from the previous 15 million tons/year, crude palm oil or CPO to 60 million tons/year from the previous 50 million tons/year. This will save land use so that the opening of forest land for food crops and (bio)energy such as food estates may not be necessary or at least slow it down. But why until now has biochar not received attention and been used as a solution?

In addition, biochar production with pyrolysis will also produce a number of by-products that can be used for energy applications or others, as in the diagram above. Many agro-industries require drying in their production processes, so this is an additional advantage of using pyrolysis technology for biochar production. While from the environmental aspect, biochar is also a carbon sequestration so that it is a climate solution and can get carbon credit. Likewise in waste management, because the raw material for biochar is biomass waste from agriculture, plantations and forestry, even from organic waste, the pyrolysis and biochar business is also a solution to this problem.   

Optimizing Pyrolysis and Biochar in the Palm Oil Industry

Indonesia's CPO production currently reaches around 50 million tons per year with a land area of ​​around 17.3 million hectares. This means that the average CPO production per hectare is only 2.9 tons or per million hectares produces 2.9 million tons. If biochar is used and there is a 20% increase, it means there is an increase of 10 million tons of CPO per year and this is equivalent to saving around 3.5 million hectares of land, or the use of biochar will slow down forest clearing (deforestation) for palm oil plantations.

The average speed of Indonesian palm oil plantation area is 6.5% per year or equivalent to about 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% on average. Even the largest expansion of palm oil land occurred in 2017, which increased by 2.8 million hectares. By opening 1 million hectares of forest, national CPO production only increased by 11%, while without the need to open forests, namely with the application of biochar, there could be a 20% increase in productivity. And the 20% increase in FFB yield (fresh fruit bunches) using biochar is a low estimate.

With the number of palm oil mills in Indonesia reaching more than 1000 units and tens of millions of tons of biomass waste, especially empty palm fruit bunches (EFB), the volume of biochar production produced is certainly very large. In addition, pyrolysis technology can replace combustion technology which is generally used in palm oil mills to produce steam for electricity production and sterilization of fresh fruit bunches (FFB) in CPO production. With pyrolysis raw materials using palm oil tankos and being able to replace palm kernel shells, 100% of palm kernel shells (PKS) can be sold or exported. The sale of palm kernel shells or PKS (palm kernel shells) will certainly provide additional attractive benefits for the palm oil company. Palm kernel shells or PKS are the main competitors of wood pellets in the global biomass market.

In addition, the use of biochar also saves fertilizer use and the highest operational cost on oil palm plantations is fertilizer so this is very relevant. Tens of billions of costs spent on fertilizer can be reduced by using biochar, especially since the biochar comes from its own waste so that it will automatically become a solution for biomass waste management. Including biopesticides and liquid organic fertilizers can also be produced from the pyrolysis process. Carbon credit is the next business potential. This is because the application of biochar to the soil for agriculture or plantations is an effort for carbon sequestration / carbon sink.

The benefits that can be obtained from this biochar carbon credit are also large, even globally biochar carbon credit ranks first or more than 90% in Carbon Dioxide Removal (CDR) recorded in cdr.fyi. However, there are indeed many large biochar producers who do not sell their carbon credits because of the methodological requirements of standard carbon companies such as Puro Earth and Verra, and these biochar producers are comfortable with their biochar sales business, especially since these producers have existed (established) since before carbon credits were available for biochar.    

Rabu, 08 Desember 2021

The Urgency of Ex-Coal Mine Reclamation With Biochar

The large number of ex-coal mines that are not reclaimed causes various environmental problems and even life safety. There have been many casualties from the former coal mine pit. The simple logic should be that after the coal deposit is taken or extracted during the mining activity, the land is returned and repaired so that the quality is better than before the mining activity or at least the same, but not worse so that various environmental problems arise. The era of decarbonization is accelerating because of the driving force of climate change and global warming. Fossil fuels, especially coal, are starting to be abandoned, of course, including the coal mining activity itself. Meanwhile, the area of former coal mines which reaches millions of hectares is a lot of environmental problems today.

When the quality of the soil is improved so that it has high fertility then this becomes a very extraordinary potential so that a number of important activities can be carried out, such as agriculture, animal husbandry and forestry. With such conditions, the effort to self-sufficiency or food sovereignty is not impossible. Technically, it can be analyzed which of the agricultural, livestock and forestry sectors can reach the goal faster, namely food independence or sovereignty. But before going far and doing business on the ex-mining land, to be more specific what products will be made, the basic question is how to improve the condition of the damaged soil and the scale is also massive?

The application of biochar to the soil is a surefire solution in an effort to repair damaged soils. Depending on how severe the damage is, the characteristics of the soil type and the final quality level being targeted will determine the application or dosage of the biochar. In addition to improving the soil, the biochar application also absorbs CO2 from the atmosphere, thereby reducing the concentration of CO2 from the atmosphere or is a carbon negative scenario. Biochar buried in the soil becomes a carbon sink, similar to creating a conservation forest to absorb CO2 from the atmosphere. How much biochar is buried so that it can be calculated that the CO2 absorbed into the carbon sink can be sold on the carbon market and get carbon credit. Biochar itself is able to last in the soil for hundreds of years and is not decomposed for a long time. Even when the land has been repaired with biochar and then a conservation forest is made on it, the carbon credit obtained are double, namely from the application of biochar itself and from the conservation forest. But once again, of course, economic factors are another important consideration, so as above, after soil fertility is improved with biochar, there are a number of options for using the land. Of course which one provides the best economic benefits will be the choice.

Millions of hectares of land can be recovered so that its benefits will be maximized. Say, for example, that one million hectares of land can be recovered and then used for activities that support food security or self-sufficiency such as agriculture and animal husbandry, then how much output can be calculated. Even better if there can be a surplus of food production so that it can export. Or even in the longer term, the land is reforested into conservation forest, so how much CO2 can be absorbed by the forest plus the application of biochar. Of course very much. Then why have to build a food estate but have to clear forest land, while there are other better ways? Namely not only restoring but improving the condition of the land even better before the coal mining activity was carried out.  

Sabtu, 21 April 2012

Three Motivations For Biomass Thermal Conversion

At least, three motivating factors on biomass thermal conversion, like is mentioned below :

A.    Renewability Benefit
Fossil fuel like coal, oil and gas are good and convenient source of energy, and they meet the energy demands of society very effectively. However, there is one major problem: Fossil fuel resources are finite and not renewable.Biomass on the other hand, grows and is renewable. A crop cut this year will grow again next year; a tree cut today may grow up within a decade. Unlike fossil fuel, then, biomass is not likely to be depleted with consumption. For this reason, its use, especially for energy production, is rising fast.

We may argue against cutting trees for energy because they serve as a CO2 sink. This is true, but a tree stops absorbing CO2 after it dies. On the other hand, if left alone in the forest it can release CO2 in a forest fire or release more harmful CH4 when it decomposes in water. The use of a tree as fuel after its life provides carbon-neutral energy as well as avoids greenhouse gas release from deadwood. The best option is new planting following cutting, as is done by some pulp industries. Fast-growing plants like switch grass and Miscanthus are being considered as fuel for new energy projects. These plants have very short growing periods that can be counted in months.

B.    Enviromental Benefit
With growing evidence of global warming, the need to reduce human-made greenhouse gas emissions is being recognized. Emission of other air pollutants, such as NO2, SO2, and Hg, is no longer acceptable, as it was in the  past. In elementary schools and in corporate boardrooms, the environment is a major issue, and it has been major driver for biomass thermal conversion such as pyrolysis for energy production. Biomass has a special appeal in this regard, as it makes no net contribution to carbondioxide emission to the atmosphere.

Regulations for making biomass economically viable are in the place in many countries. For example, if biomass replace fossil fuel in a plant, that plant earns credit for CO2 reduction equivalent to what the fossil fuel was emitting. This credits can be sold on the market for additional revenue in countries where such trades are in practice.

Carbon Dioxide Emissions
When burned, biomass release the CO2 it absorbed from the atmosphere in the recent past, not millions of years ago, as with fossil fuel. The net addition of CO2 to the atmosphere through biomass combustion is thus considered to be zero.

Sulfur Removal
Most virgin or fresh biomass contains little to no sulfur. Biomass-derived feedstock such as municipal solid waste (MSW) or sewage sludge does contain sulfur, which requires limestone for capture of it. Interestingly, such derived feedstock also contains small amounts of calcium, which intrinsically aids sulfur capture.

Nitrogen Removal
A combustion system firing fossil fuel can oxidize the nitrogen in fuel and in air into NO, the acid rain precursor, or into N2O, a greenhouse gas. Both are difficult to remove. In a pyrolysis system, nitrogen appears as either N2 or NH3, which is removed relatively easily in the syngas-cleaning stage.
Nitrous oxide emission results from the oxidation of fuel nitrogen alone. Measurement in a biomass combustion system showed a very low level of N2O emission (Van Loo and Koppejan, 2008, p.295)

Dust and Other Hazardous Gases
 Highly toxic pollutants like dioxin and furan, which can be released in a combustion system, are not likely to form in an oxygen-absenced pyrolyzer. Particulate in the syngas is also reduced significantly by multiple gas clean up systems.

C.    Sociopolitical Benefit

The sociopolitical benefits of biomass are substantial. For one, biomass is locally grown resource. For one, biomass is a locally grown resource. For a biomass-based power plant to be economically viable, the biomass needs to come from within a certain distance from it.  This means that every biomass plant can prompt the development of associated industries for biomass growing, collecting, and transporting.
Some believe that a biomass fuel plant could create up to 20 times more employment than that created by a coal-or oil-based plant (Van Loo and Koppejan, 2008, p.1).  The biomass industry thus has a positive impact on the local economy.

Another very important aspect of biomass-based energy, fuel, or chemicals is that they reduce reliance on imported fossil fuels. The volatile global political landscape has shown that supply and price can change dramatically within a short time, with a sharp rise in the price of feedstock. Locally grown biomass is relatively free from such uncertainties.