Tampilkan postingan dengan label empty fruit bunches. Tampilkan semua postingan
Tampilkan postingan dengan label empty fruit bunches. Tampilkan semua postingan

Senin, 10 Maret 2025

Optimizing Pyrolysis and Biochar in the Palm Oil Industry

Indonesia's CPO production currently reaches around 50 million tons per year with a land area of ​​around 17.3 million hectares. This means that the average CPO production per hectare is only 2.9 tons or per million hectares produces 2.9 million tons. If biochar is used and there is a 20% increase, it means there is an increase of 10 million tons of CPO per year and this is equivalent to saving around 3.5 million hectares of land, or the use of biochar will slow down forest clearing (deforestation) for palm oil plantations.

The average speed of Indonesian palm oil plantation area is 6.5% per year or equivalent to about 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% on average. Even the largest expansion of palm oil land occurred in 2017, which increased by 2.8 million hectares. By opening 1 million hectares of forest, national CPO production only increased by 11%, while without the need to open forests, namely with the application of biochar, there could be a 20% increase in productivity. And the 20% increase in FFB yield (fresh fruit bunches) using biochar is a low estimate.

With the number of palm oil mills in Indonesia reaching more than 1000 units and tens of millions of tons of biomass waste, especially empty palm fruit bunches (EFB), the volume of biochar production produced is certainly very large. In addition, pyrolysis technology can replace combustion technology which is generally used in palm oil mills to produce steam for electricity production and sterilization of fresh fruit bunches (FFB) in CPO production. With pyrolysis raw materials using palm oil tankos and being able to replace palm kernel shells, 100% of palm kernel shells (PKS) can be sold or exported. The sale of palm kernel shells or PKS (palm kernel shells) will certainly provide additional attractive benefits for the palm oil company. Palm kernel shells or PKS are the main competitors of wood pellets in the global biomass market.

In addition, the use of biochar also saves fertilizer use and the highest operational cost on oil palm plantations is fertilizer so this is very relevant. Tens of billions of costs spent on fertilizer can be reduced by using biochar, especially since the biochar comes from its own waste so that it will automatically become a solution for biomass waste management. Including biopesticides and liquid organic fertilizers can also be produced from the pyrolysis process. Carbon credit is the next business potential. This is because the application of biochar to the soil for agriculture or plantations is an effort for carbon sequestration / carbon sink.

The benefits that can be obtained from this biochar carbon credit are also large, even globally biochar carbon credit ranks first or more than 90% in Carbon Dioxide Removal (CDR) recorded in cdr.fyi. However, there are indeed many large biochar producers who do not sell their carbon credits because of the methodological requirements of standard carbon companies such as Puro Earth and Verra, and these biochar producers are comfortable with their biochar sales business, especially since these producers have existed (established) since before carbon credits were available for biochar.    

Rabu, 04 September 2024

The Urgency of IOT and Biochar Applications in Palm Oil Plantations

The sustainability trend in palm oil plantations is increasingly important and urgent, which is of course part of the global solution to environmental and climate problems. The vastness of palm oil plantations and the large production of palm oil are in the spotlight in the industry. Waste management and environmental pollution are important concerns. The large volume of biomass waste has the potential to be a source of environmental pollution and so is the excessive use of chemical fertilizers in palm oil plantations which will also cause environmental pollution. Inappropriate land use, for example deforestation and land conversion, are also other concerns.

Two important issues in the palm oil industry are increasing FFB productivity (yield improvement) and climate change resilience. And thank God, both of these things can be handled at once, namely by applying biochar. Palm oil mill biomass waste (especially palm oil empty fruit bunch) will be converted into biochar and then applied to plantation soil (sustainable soil amendment) with fertilizer so that it becomes a slow release fertilizer that will increase NUE (nutrient use efficiency) and minimize environmental pollution. With the increase in NUE, there will be yield improvement or an increase in FFB productivity. And the application of biochar which will remain in the soil or not decompose for thousands of years will become carbon sequestration / carbon sink which is in line with climate change resilience. A precise solution with one action, of course this should be very interesting and awaited by these palm oil companies.

To ensure that the biochar can work properly, an instrument is needed to measure performance and monitor it. That is why IoT (Internet of things) in this sector is needed. How slow can it goes fertilizer nutrients can be measured and monitored accurately, quickly and precisely. In this way, palm oil productivity can also be predicted. The area of ​​land on palm oil plantations that reaches thousands or tens of thousands of hectares is also not an obstacle. The area of ​​palm oil plantations in Indonesia is currently estimated to reach 17 million hectares and in Malaysia it reaches 5 million hectares, of course these palm oil companies are also trying to achieve their best level of sustainability according to the demands of the times. This is so that the application of biochar on palm oil plantations will become a trend and even its operational standards. The entry point by ensuring biochar performance with IoT is an important consideration.

This biochar application also follows the 4Rs rule, namely the right source (appropriate biochar raw material), right place (appropriate application area), right rate (appropriate dosage) and right timing. The physical and chemical properties of biochar differ depending on the raw material and production process. By following the 4R rule, biochar performance can be maximized. On the other hand, modernization in the palm oil industry also continues to be improved. The public perception of work in oil palm plantations, abbreviated as 3D (dangerous, difficult, dirty), will be gradually changed with mechanization, automation and digitalization. The ratio of workers to plantation land currently around 1: 8 ha will be increased to more than double to 1: 17.5 ha with the above modernization so that workers' wages can also be increased. This modernization is expected to help overcome the two important issues above with the biochar application.