Tampilkan postingan dengan label Cleantech Investment. Tampilkan semua postingan
Tampilkan postingan dengan label Cleantech Investment. Tampilkan semua postingan

Selasa, 27 Desember 2011

We Will Produce Charcoal As You Wish


Charcoal has widespread uses include metallurgy, tobbaco curing, water purification (activated carbon), poultry and animal feeds, soil Amendment, and other miscellaneous uses. Charcoal is made by a certain process conditions to achieve the specifications according to their usefulness.

The amounts of moisture (2 to 4 percent), volatiles (18 to 23 percent), ash (1 to 4 percent), and fixed carbon (74 to 81 percent) in charcoal provide an average index of quality for general market acceptance either in lump or briquette form. Charcoal with relatively low volatile content and correspondingly higher amounts of fixed carbon is desirable for specialized industrial uses. Temperatures somewhat higher than the normal kiln operating temperatures of 850° to 950° F (454°  to 510° C) are required to produce it. The volatiles, when present in proportions greater than about 24 percent, will cause smoking when charcoal is burned and will give product degrade in some areas of recreational use.
 
In a continuous process raw organic material of any kind is passed through the retorts and cooked into marketable products. While some of the biogas is used to fuel its own process, on site gas turbines or steam boilers can be fueled by the same gas. Variable speed drives give the operator total control on product quality by altering the residence time of the feed stock. The operator can also vary the percentage split between the bio-oil and charcoal by changing the temperature.
 
Chemical properties can be precisely determined only with analytical equipment. A rough quality test for volatiles can be made, however, by burning samples of charcoal and observing the absence or extent of smoking. A metallic ring when a piece of charcoal is dropped onto a hard surface provides a further rough test for good quality. Too rapid coaling at high temperature usually results in the formation of crumbly charcoal easily broken into small pieces and fines. The species of wood does not influence the chemical quality of charcoal; the physical properties, however, are influenced by wood density and structure. For example, the low-density woods produce charcoal in greater bulk, while some woods will produce brittle charcoal. In general, the lump charcoal obtained from the medium-dense to dense hardwoods is considered a cleaner product because of less breakage and dusting with handling.

Senin, 15 Maret 2010

'Renewable Energy' new part of our life


Not only are fossil fuels the problem, but according to the IEA's World Energy Outlook 2008, we are likely to see an increase in world primary energy demand of 45 percent between 2006 and 2030. As set out in the Energy Equality chapter, developing countries and emerging economies are in the great need of energy. Both need to fuel their growth, and the latter are beginning to converge with formerly dominant world powers, who are now seeing their economies contract.

The only logical and safe option is to channel all possible resources into a new world energy system, based on renewable energies which can provide millions of jobs, new industries and exports, energy security, and protection of the climate and environment. Any policymaker still voting for fossil fuels, and against renewable energy, on the basis of such pros and cons must be asked to give way to someone wiser and more caring. New nuclear programme is not the answer because problem on technology detail. The more one researches the subject, the firmer these conclusion become:renewable energy is the only reasonable and logical choice, with huge variety of benefits; and the switch must be prioritized immediately.

But this is a highly complex matter-renewable energy and its applications are varied, and provide a unique energy endowment for each country. There is no one-size-fits-all approach on technology and policy which can be advocated/ Ultimately, it will be up to each nation to determine how best to harness and protect investment in its renewable resources, and to decide how to share them.By offering a preferential tariff for producers of renewable energy, as well as investment security, they have led to the most rapid deployment at the lowest costs of any policy.

Investment in renewable energy has been surging, and 2008 was another good year with $120 billion invested worldwide. Approximate figures suggest wind (42 percent), solar PV (32 percent) dan biofuels (13 percent) attracted most of these funds, with biomass and geothermal power and heat, solar hot water and small hydro taking up around 6, 6 and 5 percent respectively. Manufacturing capacity has also benefited strongly from capital investment. The US ($24 billion), Germany, China and Spain ($15-19 billion range) and Brazil ($5 billion) were the biggest investors. Energy security and meeting carbon reduction targets, it will be very interesting to see how deployment develops over the next few years. And around US$500 million in development assistance grants is targeted at developing countries annually for renewable energy projects and for training and market support.

This funds policy analysis work, economic assessment, market and business development, project feasibility studies, financing mechanisms, technology improvements and capacity building, and sometimes covers partial incremental costs of renewable energy projects.

Several foundations and NGOs such as the UN Foundation and the Energy Foundation provide funds and manage programmes promoting renewable energy. Bilateral development banks and agencies also contribute, such as the European Union and the European Investment Bank, and national development institutions such as the Australian Agency for International Development (AusAID) and the Deutsche Gesellschaft fur Technische Zusammerarbeit GmbH, better known as GTZ.

As an example of where some of these agencies put their money, the UK’s Department for International Development (DFID) is one of the many funders of Renewable Energy and Energy Efficiency Partnership (REEEP) a global initiative concerned with reducing policy, regulatory and financial barriers to renewable energy and energy efficiency technologies and projects. The partnership has funded more than eighty ‘high quality’ projects in forty developing countries. These projects are beginning to deliver new business models, policy recommendations, risk mitigation instruments and regulatory measures. REEEP also engages in international, national and regional policy dialogues.

Several United Nations organizations actively promote renewable energy. The United Nations Development Programme (UNDP) has an ‘Energy and Environment Practice” which promote acess to sustainable energy services as an essential development strategy. UNER’s (United Nations Environment Programme) renewable energy activities focus on the needs of developing and transition economies in various areas of renewable energy technology research, development and commercialization.

UNEP’s Sustainable Energy Finance Initiative (SEFI) is a platform providing financiers with the tools, support and global network needed to conceive and manage investments in the “complex and rapidly changing marketplace” for clean energy technologies. UNIDO (the United Nations Industrial Development Organization) focuses on rural energy for productive use. Other UN bodies work to spread renewable energy technology information, and to engage stakeholders in accelerating RE development.

The GEF was established in 1991 under the United Nations Framework Convention on Climate Change (UNFCCC), as a mechanism to help developing countries fund projects and programmes that protect the global environment while still supporting national sustainable development initiatives. Nearly a billion dollars has gone to around 150 renewable energy projects in developing countries.

Indonesia and Malaysia is the biggest CPO (crude palm oil) producers in the world. Indonesia has reported with an annual production approximately 22 million tones, a plantation area of approximately 7 million hectares and more than 400 palm oil mills (POM). An additional 18 million hectares has been identified for palm plantation expansion. The solid waste components from POM production are empty fruit bunch (EFB), fiber and shell. These have been identified as the potential raw materials for pyrolysis technology to yield charcoal / biochar or torrified wood, bio-oil and syngas.

JFE have mission to make industry of POMs solid waste processing to produce renewable energy and agricultural products in Indonesia and South-East Asia, by making joint venture company with investor and/or biomass owner. The wide of market access, proven technology (JF BioCarbon System Ltd, Canada as technological support), abundant raw material, good operating business system and research capability for development is the key success of this business.

For further contact please send email eko.sb.setyawan@gmail.com or call Eko +6281328841805, John Flottvik 250-315-2226

Senin, 27 Juli 2009

Meng-uangkan Sampah Kota



Sampah kota telah menjadi permasalahan besar di hampir semua kota besar di Indonesia. Volume sampah semakin hari semakin bertambah berbanding lurus dengan pertambahan jumlah penduduk. Untuk di Indonesia selain tidak ada pemisahan antara sampah organik dan anorganik yang cukup merepotkan pada pengolahan sampahnya juga kesadaran masyarakat untu membuang sampah di tempat yang disediakan perlu dibudayakan dan ditingkatkan. Tidak sedikit juga masyarakat yang membuang sampahnya ke sungai yang potensial dan sudah beberapa kali terbukti sebagai salah satu penyebab banjir. Berbagai program digulirkan pemerintah untuk merubah perilaku masyarakat tersebut ditambah biaya besar, tetapi seberapa efektif perlu kita cermati dan analisis bersama. Hampir semua tempat pembuangan akhir sampah ini terlihat kumuh dengan bau yang tidak sedap. Lingkungan sekitar tempat pembuangan akhir otomatis adalah lingkungan yang tidak sehat.

Salah satu masalah lingkungan hidup yang memerlukan penanganan serius adalah lingkungan hidup perkotaan, yaitu pencemaran tanah, air dan udara. Sampah adalah sumber utama pencemaran tanah dan air. Volume sampah di kota-kota besar di Indonesia terus bertambah, seiring dengan pertambahan penduduk. Jumlah sampah di kota metropolitan Jakarta rata-rata 0,65kg, di Surabaya 0,52 kg dan Bandung 0,50 kg/orang/hari. Dengan jumlah penduduk sekitar delapan juta jiwa, DKI Jakarta setiap hari menghasilkan sekitar 6.250 ton atau sekitar 25.650 meter kubik. Jika sampah sebanyak ini diangkut dengan truk berkapasitas lima ton-seukuran truk kebersihan kota Jakarta-setiap hari akan terjadi antrean 1.250 truk menuju tempat pembuangan sampah.


Volume sampah yang dihasilkan suatu komunitas kota sangat besar tiap harinya dan cenderung meningkat. Tempat pembuangan akhir dalam waktu singkat akan segera overload untuk kapasitas sampah tersebut. Simak saja seperti kota Depok yang diperkirakan hanya mampu sampai 2013, Yogyakarta sampai 2012, dan Jakarta sudah sangat sering terusik oleh masalah sampah ini. Dan ketika tempat pembuangan akhir hendak diperbesar kapasitasnya dengan menambah alokasi lahan, simaklah betapa banyak masyarakat yang keberatan hingga berdemo untuk menolak rencana tersebut. Pola sistem sanitary landfill (penumpukan sampah) di TPA itu sudah dinilai tak sesuai dengan kondisi zaman. Tak hanya itu, pola tersebut juga bisa membahayakan warga sekitarnya semisal longsor karena tingginya tumpukannya. Belum lagi, sering terjadinya ledakan sampah akibat gas metan yang pada akhirnya menimbulkan kebakaran. Selain masalah daya tampung tempat pembuangan akhir, jumlah armada pengangkut juga belum mencukupi sehingga banyak sampah tetap mencemari lingkungan dan berakibat buruk pada kesehatan.



Berbagai upaya dilakukan untuk mengatasi sampah kota ini yang jumlahnya bisa mencapai puluhan ton dan menggunung tergantung jumlah penduduk di kota tersebut. Pembusukan yang menghasilkan bau yang tidak sedap dan gas metana ini perlu mendapat penanganan serius dan professional. Ada sejumlah cara yang digunakan untuk mengatasi masalah sampah ini, tetapi cara terbaik dengan seluruh sampah bisa dimanfaatkan dan bernilai tambah secara optimal adalah keinginan semua pihak.


Hingga saat ini, penanganan sampah tersebut belum optimal. Menurut BPS tahun 1999, baru 11,25% sampah didaerah perkotaan yang diangkut petugas, 63,35% ditimbun/dibakar, 6,35% sampah dibuat kompos, dan 19,05% sampah dibuang ke kali/sembarangan. Sedangkan didaerah pedesaan sebanyak 19% sampah diangkut oleh petugas, 54% ditimbun/dibakar, 7% sampah dibuat kompos dan 20% dibuang ke kali/sembarangan.

Cara paling mudah adalah dilakukan sortasi antara sampah organik dan sampah anorganik. Pemulung hanya mengambil bahan-bahan yang laku dijual mulai dari logam, kardus dan plastik tipe tertentu. Sedangkan sampah organik setelah dipisahkan bisa diolah lebih lanjut menjadi kompos. Lalu bagaimana dengan sampah plastik yang tidak diambil pemulung dan tidak bisa diurai tanah (non-recycle and non-reuseable plastic)?

Teknologi pirolisis kontinyu mampu mengolah limbah tersebut hingga menjadi produk bahan bakar yang bernilai jual. Plastik adalah produk turunan dari minyak bumi yang komposisinya adalah hidrokarbon, ketika bahan tersebut dipirolisis maka produk berupa hidrokarbon kembali terbentuk dan Anda bisa segera mengaplikasikan sebagai bahan bakar komersial sebagai substitusi minyak tanah. Jika tidak memiliki resource untuk mengolah sampah organik menjadi kompos alternatif dengan pirolisis bisa menjadi solusi terbaik, produk arang, biooil akan bisa kita ambil dengan nilai jual tinggi, sedangkan syngas potensial sebagai pembangkit listrik.

Cara lain yang juga tidak kalah praktis adalah membakarnya langsung dalam incinerator. Memang terlihat praktis tetapi ada berbagai side effect penggunaan incinerator antara lain pembakaran menimbulkan polusi udara tinggi, panas pembakaran tidak te-recovery, dan hanya dihasilkan abu yang nilai jualnya sangat rendah. Energi semestinya dimanfaatkan dengan bijak apalagi era krisis energi membayangi di depan mata. Pilihan ada di tangan Anda, apakah tetap mempertahankan cara lama dengan banyak efek negatif bagi lingkungan dan nyaris tanpa nilai tambah ataukah menggunakan pilihan teknologi yang mampu menjadi solusi sampah tersebut dan menghasilkan produk energi yang memang sangat dibutuhkan oleh semua pihak?



Ban-ban bekas mobil atau truk Anda menumpuk dan hanya menimbulkan masalah lingkungan dan kesehatan. Daerah-daerah pertambangan dengan ribuan dumptruck-nya ataupun perkotaan besar mengalami masalah untuk mengolah tumpukan bekas. Mengapa tidak mengolahnya lagi menjadi produk bahan bakar yang memang akan selalu Anda butuhkan? Teknologi pirolisis kontinyu kembali mampu memberikan solusi bagi Anda. Ban yang pembuatanya berasal dari material antara lain karet, arang, dan berbagai hidrokarbon sebagai perekat campurannya akan kembali terdekomposisi menjadi produk bahan bakar cair dan padat. Syngas yang dihasilkan akan optimal sebagai pembangkit listrik Anda. Masalah Anda teratasi, tidak menimbulkan kerusakan lingkungan dan mendapatkan nilai tambah dari produk akhirnya. Selain analisis ekonomi dan aspek lingkungan, tools neraca massa dan neraca energi akan Anda butuhkan untuk menganalisis seberapa efektif teknologi ini. Dan akhirnya pilihan ada di tangan Anda!