Tampilkan postingan dengan label palm oil plantation. Tampilkan semua postingan
Tampilkan postingan dengan label palm oil plantation. Tampilkan semua postingan

Senin, 10 Maret 2025

Cogeneration in Palm Oil Mills with Pyrolysis, Initial Steps in Biochar Production and Implementation

The analogy is like cofiring carried out in coal-fired power plants by mixing biomass fuels with a certain ratio as an effort to decarbonize the energy sector in power plants. While in palm oil mills, cogeneration with pyrolysis is an innovative initial step to enter the carbon negative era with the application of biochar, the main product of pyrolysis. And because all palm oil mills use biomass fuel for their mill operations, they are already based on carbon neutral fuel, unlike coal-fired power plants which are based on carbon positive fuels because they come from fossils.

Unlike cofiring which mixes coal and biomass fuels with a certain ratio and then burns them together in a furnace such as pulverized combustion, cogeneration is done by producing energy separately but the energy output is for the same use or especially the same boiler. This is done because the types of fuels may be different, such as solid fuels with liquid fuels or the technology for producing the energy is different. With this cogeneration, it means that not all energy is produced from one energy source or energy from cogeneration is a secondary energy source to meet total energy needs, and in the case of cogeneration in this palm oil mill, energy from combustion is still the primary energy.

Then why not just do full pyrolysis? It is easier, gradually for palm oil mills to adopt pyrolysis technology and its characteristics. Because (slow) pyrolysis aims to maximize solid / biochar, the by-products in the form of excess energy (syngas and biooil) as a source of boiler fuel, the calorific value is not as much as combustion which is indeed intended to maximize heat. Only about 1/3 of the excess energy contributes (cogeneration) as boiler fuel. In other words, if full pyrolysis is carried out directly, the amount of biomass as raw material for pyrolysis becomes 3 times greater or the pyrolysis unit becomes very large so that all palm oil mill biomass waste is used, and the mill cannot sell its palm kernel shells.

What are the benefits obtained by palm oil mills if they carry out cogeneration with pyrolysis for biochar production? Among the biochar products, it can save fertilizer use in oil palm plantations, overcome the problem of empty oil palm bunches (EFB) so that palm oil mills can achieve zero waste, palm kernel shells (PKS) that have been used for boiler fuel can be sold to increase income, the productivity of fresh fruit bunches (FFB) of palm oil increases, the application of biochar in palm oil plantations is also a climate solution (carbon sequestration / carbon sink) so that it can get carbon credit compensation and with good waste management, even zero waste and the application of biochar in palm oil plantations, palm oil companies will get a good image in terms of the environment and sustainability.  

Minggu, 29 September 2024

EUDR and Is It Time for the Palm Oil Industry to Consider Biochar ?

Malaysian smallholders cultivate around 27% of the total oil palm plantations or equivalent to 1.54 million hectares, while in Indonesia it reaches 41% or equivalent to 6.72 million hectares. Malaysia chose to increase the yield or productivity of FFB as an effort to increase CPO production, namely by being fostered by large companies with a target increase of 600,000 tons/year without increasing the land area. For Malaysia, opening new plantations is something that is very difficult, even impossible, especially with the implementation of the EUDR on December 30, 2024. Consolidation between palm oil farmers is expected to increase efficiency so that it ultimately increases yield and income. The area of ​​Malaysian palm oil plantations is around 5.7 million hectares or around 1/3 of the area of ​​Indonesian palm oil plantations (currently reaching around 17 million hectares). This is also the main reason why Malaysia chose to intensify its palm oil plantations while Indonesia tends to expand palm oil land, even though both countries face two main issues, namely increasing production and climate resilience.

Biochar application is a solution to overcome the two important issues above. Related to the increasing pressure of environmental issues, climate and sustainability, even renewable energy, it seems that biochar will receive more attention. There are many aspects of land and the environment that can be improved with biochar application which ultimately is a solution to the two main issues. For small plantations, biochar application can be easier to do, but for large plantations managed by various palm oil companies, biochar application requires more complex considerations, especially because of the risk factor of the vast area of ​​palm oil plantations, but this biochar option is still attractive. The use of IoT (Internet of Things) can be used to monitor biochar performance on the land, for more details, read here.

The operational efforts of the palm oil industry to be more environmentally friendly and efficient are a driving force and a challenge in themselves. With the large profits from the palm oil industry business, of course the palm oil industry will not simply ignore demands related to the environment and sustainability, especially the EUDR. Palm oil producers, especially Indonesia and Malaysia, are faced with a standard guideline that applies to countries producing 'edible oil', namely that palm oil to be exported must come from land that has been reforested before 2020. Otherwise, the producing country will be considered a country that does not pay attention to the issue of deforestation and hinders the export of palm oil abroad. Various lobbying and negotiation efforts by Indonesia and Malaysia as the two largest palm oil producing countries in the world to the European Union to be more relaxed in implementing the EUDR include great suspicion as to why rapeseed oil is not treated the same as palm oil. The production of rapeseed oil as a raw material for biofuel in Europe is protected and ignores its environmental impact.

Indonesia as a coconut island seduction country has an experience of coconut oil commodities in the past that can also be a reference for this. The era of the glory of copra or coconut oil was around the transitional decade of the 19th century to the 20th century or more precisely between the 1870s and 1950s and its peak in the 1920s. Why are copra and coconut oil in particular currently slumping and losing out to other vegetable oils? The long history of trade competition is the answer. Several parties, especially the American Soybean Association (ASA) accused coconut oil of being an evil oil containing cholesterol and saturated fat that clogs coronary arteries. The accusation was never proven true, in fact it was proven otherwise, but it became one of the main causes of the destruction of the global copra and coconut trade. The tropical oil campaign and war took about 30 years or in the 1950s to the late 1980s in the United States and so finally the Indonesian coconut industry slumped.

Climate factors in the form of efforts to reject deforestation with its EUDR and economic factors in the form of palm oil production will be a fierce feud but sooner or later it will definitely reach a meeting point that can be accepted by both parties because they need each other. Diverting CPO products to markets that do not require environmental requirements such as the EUDR also seems to be untimely. Furthermore, in the form of addressing two important issues in the palm oil industry, namely increasing production and climate resilience and in line with the EUDR, biochar is the right solution. The question is, will this biochar be an important consideration and even find its momentum to be applied in oil palm plantations, especially for Indonesia and Malaysia? And the implementation of the EUDR as its driving force. Let’s see.   

Rabu, 04 September 2024

Biochar as Deforestation Solution in Palm Oil Plantations and EUDR

The development of the palm oil industry and its plantations in Indonesia is very rapid, especially in the last 10 years and currently the area of ​​Indonesian palm oil plantations is estimated to reach 17 million hectares. As the largest vegetable oil producing plant in the world and the largest palm oil plantation area in the world, of course palm oil has a strategic value in the Indonesian economy. The average speed of Indonesian palm oil plantation area is 6.5% per year or equivalent to around 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% on average.

Even the largest land expansion occurred in 2017, which increased by 2.8 million hectares. From 2015 to 2019, the total area of ​​palm oil plantations increased by 3.7 million hectares. The extensification or expansion of palm oil plantations has been widely "accused" and has become the focus of the world as a result of the conversion of forest land, resulting in a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions, has worsened the image of Indonesian palm oil, which in turn has affected the selling price of palm oil products, both CPO and its derivative products. Improving this image is also not easy. One effective effort is to stop the extensification efforts so that forest land remains forest land and does not turn into oil palm plantations. The European Union on Deforestation-free Regulation (EUDR), which will come into effect on December 30, 2024, as an effort to prevent deforestation, is also an important consideration. The regulation requires consumers and producers along the supply chain of certain commodities to conduct due diligence and risk assessments to ensure that their products do not contribute to deforestation. The EUDR also applies a tiered inspection and penalty system based on the level of risk perceived in the country of origin.

With the extensification of oil palm land of more than 1 million per hectare each year but the increase in oil palm fruit production is only 11%, it is certainly less attractive and must be avoided, especially with the world's spotlight on the increasingly rapid deforestation. This also increasingly indicates the low productivity of palm oil plantations. In fact, by improving soil quality, palm oil fruit productivity can be increased significantly and the opening of new land for the creation of palm oil plantations can be avoided. Biomass waste in palm oil plantations and in palm oil mills can be used for biochar production as a solution to this problem.

With the increase in productivity of fresh fruit bunches (FFB) with the use of biochar, new palm oil plantations do not need to be opened again. Assuming an average increase in productivity of 20%, CPO production will also increase by 20% or equivalent to 2 million tons. This increase will be equivalent to opening new land covering an area of ​​more than 2 million hectares. Of course, it is not a small area of ​​land. With a 20% increase in production, it is very likely that national needs for CPO in particular have been met and so too for the export market. Another advantage of using biochar is as a climate solution as carbon sequestration/carbon sink. So the two main problems in the palm oil industry in the form of increasing productivity and climate change resilience can be overcome at once with the application of biochar.

The Urgency of IOT and Biochar Applications in Palm Oil Plantations

The sustainability trend in palm oil plantations is increasingly important and urgent, which is of course part of the global solution to environmental and climate problems. The vastness of palm oil plantations and the large production of palm oil are in the spotlight in the industry. Waste management and environmental pollution are important concerns. The large volume of biomass waste has the potential to be a source of environmental pollution and so is the excessive use of chemical fertilizers in palm oil plantations which will also cause environmental pollution. Inappropriate land use, for example deforestation and land conversion, are also other concerns.

Two important issues in the palm oil industry are increasing FFB productivity (yield improvement) and climate change resilience. And thank God, both of these things can be handled at once, namely by applying biochar. Palm oil mill biomass waste (especially palm oil empty fruit bunch) will be converted into biochar and then applied to plantation soil (sustainable soil amendment) with fertilizer so that it becomes a slow release fertilizer that will increase NUE (nutrient use efficiency) and minimize environmental pollution. With the increase in NUE, there will be yield improvement or an increase in FFB productivity. And the application of biochar which will remain in the soil or not decompose for thousands of years will become carbon sequestration / carbon sink which is in line with climate change resilience. A precise solution with one action, of course this should be very interesting and awaited by these palm oil companies.

To ensure that the biochar can work properly, an instrument is needed to measure performance and monitor it. That is why IoT (Internet of things) in this sector is needed. How slow can it goes fertilizer nutrients can be measured and monitored accurately, quickly and precisely. In this way, palm oil productivity can also be predicted. The area of ​​land on palm oil plantations that reaches thousands or tens of thousands of hectares is also not an obstacle. The area of ​​palm oil plantations in Indonesia is currently estimated to reach 17 million hectares and in Malaysia it reaches 5 million hectares, of course these palm oil companies are also trying to achieve their best level of sustainability according to the demands of the times. This is so that the application of biochar on palm oil plantations will become a trend and even its operational standards. The entry point by ensuring biochar performance with IoT is an important consideration.

This biochar application also follows the 4Rs rule, namely the right source (appropriate biochar raw material), right place (appropriate application area), right rate (appropriate dosage) and right timing. The physical and chemical properties of biochar differ depending on the raw material and production process. By following the 4R rule, biochar performance can be maximized. On the other hand, modernization in the palm oil industry also continues to be improved. The public perception of work in oil palm plantations, abbreviated as 3D (dangerous, difficult, dirty), will be gradually changed with mechanization, automation and digitalization. The ratio of workers to plantation land currently around 1: 8 ha will be increased to more than double to 1: 17.5 ha with the above modernization so that workers' wages can also be increased. This modernization is expected to help overcome the two important issues above with the biochar application.

Selasa, 06 Agustus 2024

Why is There No Biochar Production for The Palm Oil Industry Yet?

Even though biomass waste is abundant in the palm oil industry, both in the plantation area and in the palm oil mill area, most of the biomass waste, especially empty fruit bunches or EFB, is still not utilized or is simply piled up or thrown away. In fact, if the palm oil industry has a strong vision about maximizing profits by minimizing the occurrence of waste, especially biomass, and maximizing environmental sustainability as well as being part of the climate solution, then biomass waste, especially empty fruit bunches or EFB, is a big opportunity.  Currently, special department in the palm oil industry that specifically deal with sustainability issues are starting to be created by palm oil companies. Waste management issues including the utilization of EFB, reducing soil and water pollution due to fertilizers and increasing fertilizer efficiency are the concerns of the sustainability department. 

The empty fruit bunches or EFB can be used as fuel so that most or all of the palm kernel shells or PKS can be sold directly and even exported. Palm oil mill boiler fuel currently uses fuel in the form of palm fiber (mesocarp fiber) and some palm kernel shells / PKS, which can be replaced using empty fruit bunches (EFB) and palm fiber (mesocarp fiber) and without palm kernel shells / PKS. Palm kernel shells / PKS are a very popular biomass fuel in the global market that competes fiercely with wood pellets. By being able to sell all palm kernel shells / PKS and at the same time utilize empty fruit bunch / EFB waste, the palm oil industry will provide many economic benefits.


The use of empty fruit bunches / EFB and mesocarp fiber as a heat source for the boiler is not burned as usual or as is done by all palm oil mills today but must be gasified or pyrolyzed so that another product is produced in the form of biochar. Although gasification can be used to produce biochar, pyrolysis is more recommended because the quality and quantity of biochar will be better. The biochar can later be used for the palm oil plantation itself. The use of biochar in palm oil plantations will significantly save on fertilizer use as well as reducing water and soil pollution due to inefficient use of fertilizer. The biggest cost in operating a palm oil plantation is fertilizer, so by using biochar these operational costs can automatically be reduced. Biochar will become a slow release agent so that fertilizer use will be more efficient or increase NUE (Nutrients Use Efficiency).

Empty fruit bunches / EFB and mesocarp fiber are solid waste from palm oil mills so the waste is located around the palm oil mill, while biochar is used for palm oil plantations. In palm oil companies, management is generally separated between the plantation and mill departments. The use of biochar in palm oil plantations while the raw material comes from palm oil mills requires special arrangements regarding this matter. This could be, for example, trucks transporting fresh fruit bunch / FFB from the plantation to the palm oil mill, then after the FFB is unloaded at the mill, they then go to the plantation again carrying biochar from the palm oil mill.

Currently, no one is utilizing empty fruit bunches / EFB and palm mesocarp fiber as a source of boiler heat and biochar production. The main factor causing this is the main orientation or vision of the palm oil company itself as described above. This is predicted to change soon as awareness of climate issues increases and reaches all levels, especially in sectors related to energy and sustainibility. Moreover, when biochar is applied to plantation land, it also gets carbon credit as carbon sequestration. The smoke coming out of the boiler furnace will also be cleaner as seen from its opacity. The use of gas and liquid fuels from pyrolysis by-products will produce better combustion quality as well as smoke from the chimney. And even the liquid products from pyrolysis can also be used as biopesticides and organic fertilizers. Boiler efficiency will also increase because it uses boiler feed water (BFW) in the form of hot water from the condenser output of the pyrolysis unit.

Apart from old palm oil mills which really want to upgrade their industrial energy systems and fertilizer efficiency in their plantations including sustaibility according to this vision, new palm oil mills whose status is in the development stage should be able to apply this concept more easily. New palm oil mills can immediately follow developments and demands of the times so that they become trend setters with this vision. Being a pioneer and trend setter is indeed more difficult and even risky than just being a follower, but this will raise the reputation and become a leader in the industry so it should also have a positive impact on the company's business performance. A worthy effort.     

Selasa, 07 Desember 2021

Biochar and IoT in Palm Oil Plantations

Monitoring until action needs to be done to get optimal results according to the expected target. Ensuring that the supply of nutrients and water is always sufficient for the needs of plants is an important thing to do. Other variables that affect the process of nutrient absorption and plant growth need to be properly monitored. Biochar is a soil amendment to improve soil properties such as soil structure, soil aeration, water and nutrient availability, suppress the development of certain plant diseases, create good habitats for symbiotic microorganisms and reduce soil acidity. Biochar also  adsorbs greenhouse gases in the form of carbon dioxide from the atmosphere, thereby reducing these gases in the atmosphere. It is important that sensors are used to read the variables above. How many sensors are installed and what type is also very dependent on the objectives being achieved. The use of various sensors in large numbers is also a cost in itself, while a production is always looking for the most efficient way to maximize profit. The use of sensors that are effective and efficient is the key to successfully monitoring the conditions of biochar applications in the field with a specified period of time, even real time all the time.

IoT (Internet of Things) is predicted to become a trend in the near future and it cannot be avoided. A number of plantation areas that are located far away in remote villages, such as in palm oil plantations, are generally still constrained by the internet network, this condition makes IoT unable to be applied or still not optimal. Palm oil plantations are one of the ideal locations for biochar applications for large capacities as well as IoT, for more details read here. While waiting for an internet network in the area provided by a telecommunications company, satellite signals can be used even with small data usage so that the information displayed is also less and simpler. This makes only really important information that needs to be monitored, especially on plantation locations that are difficult to reach. At such a stage manual monitoring is still much needed, so the online information from the satellite only helps for verification. Devices such as drones can also be used to monitor growth or general the plantation conditions.

Basically, IoT and its supporting devices such as artificial intelligence and big data are tools to help make decisions, especially for the plantation manager such as palm oil plantations. Knowing the condition of the plantation so that it can maintain the level of plantation productivity performance is an important part of maintaining the company's performance itself. Even though IoT devices help in such a way, the important thing that is still needed is basic knowledge to the characteristics of plantation management itself. These sciences will be very useful for analyzing the data presented by IoT devices more sharply and accurately or on target. Selection of sensors, the number of sensors to the location of the sensor installation must be carried out effectively and this can only be done with an adequate scientific basis. A number of chemical analyzes in general also cannot be done sensory but using reagents and so on. In addition, IoT is also a new thing so that a number of certain activities or practices in certain agriculture or plantations and more specifically in the biochar application have not been identified for IoT developers. This is so that collaboration between researchers, practitioners and IoT developers is needed so that IoT device products will also be more effective and efficient. 

Kamis, 25 November 2021

Biochar as a Solution to Deforestation in Indonesian Palm Oil Plantations

Palm oil trees are not native to Indonesia but come from West Africa and were brought by the Dutch colonialists in the mid 19th century. At first they brought 4 grains and planted them in the Bogor Botanical Garden which is now a palm oil monument. The first palm oil plantation were established in Indonesia in the early 1900's in North Sumatra. The development of the palm oil industry and its subsequent plantations is very rapid, especially in the last 10 years and it is currently estimated that the area of Indonesian palm oil plantations reaches 15 million hectares. As the largest vegetable oil-producing plant in the world and the area of palm oil plantations is also the largest in the world, of course, palm oil has a strategic value in the Indonesian economy. The average rate of growth for Indonesian palm oil plantations is 6.5% per year or the equivalent of about 500 thousands up to 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% in average. In fact, the largest increase occurred in 2017 which increased by 2.8 million hectares. From 2015 to 2019, the total area of palm oil increased by 3.7 million hectares. Extensification or expansion of palm oil plantations turned out to be many "accused" and became the world's spotlight as from the conversion of forest land functions, so that there was a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions worsened the image of Indonesian palm oil which in turn affected the selling price of palm oil, both CPO (crude palm oil) and its derivative products. Improving the image is also not easy. One of the effective measures is to stop the extensification effort so that forest land remains as forest land and does not turn into palm oil plantations. Biochar can be an effective solution to this problem. By increasing the productivity of fresh fruit bunches (FFB) from the usage of biochar, new palm oil plantations do not need to be opened again. Assuming an average productivity increase of 20% occurs, CPO production will also increase by 20% or equivalent to 2 million tons. The increase would be equivalent to new land clearing of more than 2 million hectares. Certainly not a small land area. With the 20% increase in production, it is very likely that the national needs for CPO needs have been met and the same goes for the export market.

With the extensification of palm oil land of more than 1 million per hectare every year but the increase in palm oil fruit (FFB/fresh fruit bunch) production is only 11%, it is certainly less attractive and must be avoided, especially when the world's attention on deforestation is getting stronger. This also indicates the low productivity of the palm oil plantations. In fact, by improving soil quality, the productivity of palm oil fruit can be significantly increased and the clearing of new land for palm oil plantations can be avoided. Biomass wastes in palm oil plantations and in palm oil mills can be used for the production of biochar.

In palm oil mills, this biomass waste is easier to process in large quantities, especially empty fruit bunches (EFB). An average palm oil mill can produce 200 tons of waste per day of EFB. Meanwhile, in palm oil plantations, biomass waste, such as palm fronds, leaves and stems, is the raw material for the production of biochar. Palm oil trunks even have a lot of negative impacts when they are not treated adequately or are only left to rot in the plantation, giving rise to horn beetle pests, for more details read here. Optimizing the utilization of biomass waste has multiple benefits, not only preventing environmental pollution by the waste, and can be described as the scheme below.

In terms of technology, biochar production technology is also very varied, from simple technology (low tech, low cost) that is cheap to advanced high technology that is efficient, precise process control but at a higher price. In the palm oil mill, it will be effective to use high technology so that it can be integrated with the operations of the palm oil mill. The excess energy from the pyrolysis process will also replace boiler fuel which has been using fiber and palm kernel shells (PKS). There are indeed many advantages of palm oil mills when doing the production of biochar, for more details, please read here. Production of biochar with empty fruit bunches or EFB biochar is also more profitable than EFB pellets, a more detailed explanation can be read here. Meanwhile, for people who have palm oil plantations as part of society palm oil producers (Plasma) or independent plantations, they can use simple technology (low tech, low cost) for the production of biochar. Biochar production in a simple way can also take advantage of excess energy for various small business activities such as those carried out in Tanzania, Africa. In this way, the community in addition to producing biochar also gets a source of energy including reducing the use of firewood which can be obtained from cutting down trees in protected forests or reducing deforestation pressures.

Fertilizer is the highest cost component in the palm oil plantation operations. Besides being able to increase the productivity of palm oil fruit or FFB, Biochar can also reduce the need for the use of fertilizers. An increase in soil pH makes nutrients easily absorbed by palm oil trees and also increases soil microbial activity which increases fertility is one of the benefits of using biochar. And when the performance of the productivity level of palm oil plantations has been able to be achieved and maintained, a number of other improvements can also be made. From the industry point of view, raw materials are a vital factor in terms of availability, continuity of supply and quality, including palm oil mills. Moreover, the plantation aspect of CPO production holds a portion of 80% while the factory or the mill aspect is only 20%. This confirms that the plantation aspect plays a vital role in the supply of these raw materials, so that efforts to maximize productivity, including maintaining productivity level performance, are very important and a top priority. Meanwhile, the change in palm oil plantations from monoculture to polyculture (mixed plantation) is one of the further improvement that can be made. Extensive monoculture plantations have the potential to be susceptible to disease, so they need to be avoided. Technically, how much monoculture area is still effective, especially for palm oil plantations, there are no convincing findings. 

Minggu, 21 November 2021

Production of EFB Pellet EFB or EFB Biochar ?

One of the main obstacles for palm oil mills to develop their business is the availability of electricity. With locations that are generally located in remote areas in the middle of palm oil plantations, palm oil mills do not get electricity supply from PLN (Indonesia State Owned Electricity Company). Eventhough electricity is very important in a production process, such as in the production of EFB pellets. Even though empty bunches or EFB in general are an environmental problem for palm oil mills. If every ton / hour of EFB pellet production takes 300 KW, then for production of 10 tonnes / hour (5,000 tonnes / month) 3 MW of electricity is needed, export of biomass fuels such as wood pellets and PKS (palm kernel shell)  with bulk shipments usually requires 10 thousand tons / shipment. So if the production of EFB pellets is planned for 10 thousand tons / month so that every month can export the EFB pellets, the factory capacity or EFB pellet production is 20 tons / hour (10,000 tons / month) 6 MW of electricity is needed. For palm oil mills, utilizing liquid waste or POME to become biogas is a potential source of energy for the production of electricity. However, with a palm oil mill capacity of 30 tonnes of FFB / hour, only about 1 MW of electricity is generated from POME biogas, so to produce 6 MW of palm oil mills with a capacity of 6 x 30 tonnes of FFB / hour are generated equal to 180 tonnes of FFB / hour. In fact, the average palm oil mill has a capacity of 45 - 60 tonnes of FFB / hour, so it is impossible to generate 6 MW of electricity from the palm oil mill's POME biogas.

The use of EFB pellets is the same as wood pellets and PKS is mainly for power generation. All three are biomass fuels. The high chlorine and potassium content in empty palm fruit bunches or EFB makes their use limited to power plants due to corrosion and scale causes. Not all power plants can use EFB pellets at large capacities or quantities. The use of coal-fired power plants with pulverized combustion technology can only be used with a small ratio or an estimate of less than 5%, but can be used more or even 100% in fluidized bed and stoker types of power plants. The capacity of fluidized bed and stoker type PLTU is generally much smaller than pulverized combustion.

When the biomass source is managed properly, the use of biomass fuel is an environmentally friendly and sustainable fuel. Biomass fuels like this are carbon neutral fuels, because they do not increase the concentration of CO2 in the atmosphere. This is because the biomass as a fuel source comes from plants whose growth is from the photosynthesis process, one of which uses CO2 from the atmosphere, so that when the biomass is burned, there is practically no addition of CO2 to the atmosphere. In general, there are 2 ways to overcome the CO2 concentration in the atmosphere which causes climate change and global warming, namely the carbon neutral scenario and the carbon negative scenario. In a carbon negative scenario, CO2 in the atmosphere will be captured and absorbed so that it is no longer released and the concentration of CO2 in the atmosphere can be reduced, as in the biochar application below. 

Whereas in the production of biochar with pyrolysis, besides not requiring a large amount of electrical power for its operation, electricity can also be generated from the use of excess energy from pyrolysis itself. By using the excess energy from pyrolysis, the palm oil mill boiler fuel does not need to use palm kernel shells and fiber. The use of gas or liquid fuels from the excess energy of the pyrolysis process also makes burning emissions cleaner. To achieve more complete combustion, gaseous or liquid fuels are better than solid fuels. Palm kernel shells so that everything can be sold or even exported. The biochar product applied to palm oil plantations will also improve the quality of the soil so that fertilizer use can be reduced and the productivity of palm oil fruit will increase. Biochar also absorbs CO2 from the atmosphere so that the use of biochar in large palm oil plantations means that with massive applications it can also be used for carbon trading. Recent developments indicate that the use of biochar is increasingly widespread, such as biomaterials for construction, transportation, plastics, packaging, furniture and so on. The use of biomaterials for these products means substituting the use of fossil-derived raw materials. 

So based on the above review, the production of biochar with pyrolysis is more profitable and easy to implement for palm oil mills compared to EFB pellet production. The addition of electricity production with a large capacity and the availability of sufficient raw materials is not easy and cheap for the average palm oil mill in Indonesia with a capacity of 45 - 60 tons of FFB / hour. Whereas in the production of biochar with pyrolysis, a certain amount of energy is produced which can be used for various purposes and the use of biochar is also multi-beneficial. Palm oil mills should consider this in particular in the aspects of waste management, plantation productivity, environmental aspects and business development, for more read here. Based on experience, the cost structure of the CPO or palm oil production business consists of about 80% of the cost of production is the cost of crops or plantation aspects, while the other 20% is the cost of processing or mill aspects. And the highest cost aspect of palm oil plantations is the cost of fertilization so that if the need for fertilizer can be reduced and the productivity of palm oil can be increased, of course it is very profitable, biochar is effective and efficient to use for this. 

Sabtu, 20 November 2021

The Urgency of Biochar Application on Palm Oil Plantations in Indonesia

The large number of acidic soils in Indonesia that are used for palm oil plantations makes the productivity of palm oil fruit or the resulting FFB (fresh fruit bunch) not optimal. The acid soil covers the largest dryland area in Indonesia. It occupies approximately 55% of the total land area (191.09 million ha) in Indonesia. About 107.36 million ha of all Indonesian acid soils is classified as dryland acid soils and the rest (14.93 million ha) as peat soil. Acid soils in Indonesia are distributed amongst the big islands, such as Kalimantan (39.42%), Sumatera (28.81%), Papua (18.03%), Java (7.77%), and Sulawesi (6.95%). Acidic soils with low pH make nutrient absorption low in plants and so do soil microbial activity, which plays a large role in soil fertility. This condition should not be ignored because besides making the cultivation of palm oil plantations not optimal, there will also be a lot of fertilizer used. This makes the operational costs of  palm oil plantation operation high. Biochar is a biomass pyrolysis product that is effective and efficient in overcoming these problems. With the abundant amount of biomass waste produced by palm oil mills or CPO mills as biochar raw materials, efforts to improve the quality of plantation soil should be easy to do and have even become the operational standard for these plantations. But the fact is not.

 

Why hasn't biochar been used to improve soil quality and thus increase the production of palm oil fruit or FFB? The lack of information and education about the benefits and uses of biochar are the main factor. This of course makes the application of biochar in palm oil plantations not yet done even though palm oil mills have abundant biomass waste such as empty palm fruit bunches (EFB) and fiber which are generally not used and cause environmental problems. The priority for processing EFB compared to other products such as EFB pellets or compost also needs separate considerations. The best choice, of course, is based on a comprehensive study according to the characteristics of the business or business will be built. Consider not only short-term economic benefits, but also environmental and long-term benefits is an important thing. 

 

Quantitatively, an increase in the production of palm oil fruit or FFB, an increase of at least 20% with the application of biochar is something that is normal. And a 20% increase in fruit production will also result in a big profit. Productivity of a number of other agricultural commodities can be increased by 30%, 40% or even more than 100%. The low productivity of palm oil fruit in Indonesia can be increased by the application of biochar, which is particularly effective in improving the soil quality in the palm oil plantations. Moreover, about 80% of the components of the cost of producing crude palm oil (CPO) come from the plantations, and 20% in the processing sector (palm oil mills). The operational costs of palm oil mill plantations, especially fertilizers, can also be reduced by the use of biochar. The priority of liquid biofuel development will also get better if the volume of biofuel raw materials such as CPO increases. This shows the strategic role of biochar. Apart from that from the aspect of climate change, biochar will also absorb CO2 concentrations in the atmosphere or reduce the concentration of greenhouse gases, as a solution to today's world problems.  


 

Meanwhile, from the side of the palm oil mill, another advantage obtained from biochar production is the use of excess energy from the pyrolysis process or the production of biochar as an energy source for the boiler. Boiler feed water (BFW) will also be preheated twice when it is used for cooling in the pyrolysis condenser and then the economizer on the boiler. In this way, the energy needed by the boiler decreases. When the boiler energy source uses the energy source from pyrolysis, this means that the palm kernel shell (PKS) can be taken and used for other things and can even be sold directly for local and export markets. The main obstacle to business development in the palm oil industry is the availability of energy source namely electricity. If the energy source is available, the development of palm oil-based businesses is very open and varied, such as the production of CPO derivatives, palm kernel shell processing, PKO production, PKO derivative production, biomass power plants and so on.  

Rabu, 17 November 2021

Benefits of Palm Oil Company When Produce Biochar

There are at least four things that become motivation for biochar production, namely as in the chart above. There are a number of slices that make the impact of biochar application multi-benefits, which is very much in line with today's world problems, namely climate change and global warming. Biochar has also been accepted as an instrument to reduce the concentration of CO2 in the atmosphere which causes the two big problems above, namely in 2018 biochar was included in the Intergovermental Panel on Climate Change (IPCC) as one of the negative emissions technologies (NETs). Biochar application is a carbon negative scenario because biochar can absorb CO2 from the atmosphere. This is slightly different from the use of biomass fuels such as wood pellets, wood briquette and palm kernel shell (PKS) in industrial boilers or power plants, which are carbon neutral scenarios. Indeed, basically there are 3 big scenarios to reduce the concentration of CO2 in the atmosphere, namely increasing the efficiency of equipment that uses fossil fuels, using carbon neutral fuels and carbon negative scenarios such as biochar.

Palm oil trees are known to require a lot of water and fertilizer to maintain the life sustainability and productivity of their fruit, so practical efforts in the form of increasing fertilizer nutrient efficiency and increasing fruit productivity are important. Besides that, palm oil mills produce a lot of biomass waste, especially empty fruit bunches (EFB ) and mesocarp fiber, which are very potential for biochar raw materials. The biochar is then applied in palm oil plantations which can be used with chemical fertilizers or with compost / organic fertilizers.

Pyrolysis and gasification technologies are commonly used for the production of the biochar. Apart from producing biochar by pyrolysis or gasification, energy is also produced which can be used for the business development of the palm oil industry or for electricity production. Production of PKO (Palm kernel oil) from kernel processing at KCP (kernel crushing plant) or production of torrefied PKS from PKS processing with torrefaction can be done by utilizing excess energy from the production of biochar. Most of the palm oil mills or CPO mills do not have kernel processing or KCP to produce PKO. And by making torrefied PKS, the caloric value of PKS will increase, it is easy to downsizing (increased grindability), for example in the use of cofiring and does not absorb water (hydrophobic property). In general, palm oil mills will have many advantages, both economically / financially and environmentally, with this biochar production.

Apart from being used for business development like the diagram above, excess energy from pyrolysis or gasification can also be used as boiler fuel in the palm oil mill. In this way the energy to heat the boiler, which is usually with palm kernel shell and mesocarp fiber, can be replaced by energy from pyrolysis or gasification. After that, all of the palm kernel shells / PKS can be sold or exported, thus providing additional profits for the palm oil company. The need for biomass fuel, especially palm kernel shell / PKS, is predicted to increase, both in the domestic market and in the export market. Japan is currently the largest consumer or user of palm kernel shells and it is predicted that the demand will also increase. Japan will also impose stricter standards on imports of palm kernel shells to ensure environmental sustainability by applying the GGL (Green Gold Label) certification which will be effective starting April 2023. This is like the wood pellets with FSC certification. If anyone is interested in an economic analysis of the use of biochar in palm oil business, please contact us.  

Jumat, 03 April 2020

Fertilizer Savings in Palm Oil Plantations with Biochar and Compost from Biogas Waste

Although Indonesia is the largest CPO producer in the world with an area of ​​approximately 13 million hectares of palm oil plantations, but it is estimated that less than 10% have a biogas facility from POME (Palm oil mill effluent). Whereas by utilizing POME for biogas production, besides being able to be converted into electricity or heat, it also produces organic fertilizer in the form of compost and liquid organic fertilizer. The compost can be used as fertilizer in oil palm plantations, where the cost of fertilizer for palm oil operations is the highest cost component. It is estimated that every 10,000 hectares costs approximately Rp. 35.75 billion (around US$ 2.25 million) for fertilizer and for more details, you can read here. The use of compost will certainly reduce the need for fertilizer.
Palm oil utilization scheme for optimizing CPO production
Besides that, solid wastes such as palm oil empty fruit bunch, fiber and palm oil frond are also very potential for the production of energy (electricity and heat) and biochar. Energy production in the form of electricity and heat is by burning pyrolysis byproducts in the form of syngas and biooil into the furnace to heat the boiler. And because the syngas and liquid fuels used in the furnace, so that the combustion process is more perfect and clean emissions. Steam generated from the boiler will then drive the steam turbine and generator so as to produce electricity. Low pressure steam from steam turbine is then used for sterilization or boiling the fresh fruit bunches (FFB). While biochar will be used together with compost and chemical fertilizers to make fertilizer effective in the palm oil plantations so that it becomes a slow release fertilizer. Costs for fertilization are also expected to be significantly reduced, for example by up to 50% by this way. Although biochar is not a fertilizer, it has a function that makes fertilizer use effectively because it holds fertilizer nutrients from leaching, for example from rain water, also maintains moisture and so on.
PKS loading for export in Indonesia
PKS (palm kernel shell) can even be sold or exported. This is because previously or in general the palm kernel shells used to fuel boilers with fiber, have been substituted with products from the pyrolysis process namely syngas and biooil. The need for palm kernel shells for both the domestic / local and export markets continues to increase all the time. Palm kernel shells / PKS are environmentally friendly fuels because they come from biomass so they are carbon neutral fuels. The use of PKS as a fuel is widely used by a number of industries starting as a heat source for the drying process such as spray dryers in detergent and ceramic plants, boilers in food industries such as soy sauce factory, to power plants such as in Japan, can be read in more detail here. In the world of biomass fuel commodity trading, especially in the international market, PKS is the main competitor of wood pellets. Although the specifications are not much different, the price of PKS is also cheaper because it comes from palm oil mill waste and does not need complex processing units such as wood pellets. And basically with the scheme of utilizing palm oil mill wastes as above, it will maximize the profit from the palm oil mill or CPO mill.

Sabtu, 14 Maret 2020

Business Model Utilization of Palm Oil Empty Fruit Bunches to Maximize the Profit of the Palm Oil Industry

Palm oil empty fruit bunches  (EFB) are still a problem for the palm oil mills in general. The scenario of utilizing palm oil EFB as the goal should be able to cope well with the environment and provide economic benefits. Overcoming environmental problems is clearly a top priority and must be met, but the best use of EFB scenarios should also benefit the environment, both short term and even long term. Likewise for economic benefits, economic benefits should also be obtained in line with these environmental benefits, not counterproductive. That is the best scenario for the use of palm oil EFB, which is currently still a problem.
Palm oil plantations are the production base for palm oil mills, both CPO mills and PKO mills. Without the palm fruit produced from the palm oil plantation, the palm oil mill will not be able to produce. Operation of palm oil plantations is indeed not an easy and expensive thing. This is mainly a factor of the large usage fertilizer demand, so as to reach around 60% for the operation of the palm oil plantations themselves or with an area of ​​20,000 hectares of palm oil plantations, the cost needs reach more than 70 billion rupiahs ( (around US$ 4,766,667), for more details, please read here. The factor to reduce the cost of fertilizer and maintain the productivity of palm oil fruits or fresh fruit bunches and even increase them is the main target for the utilization or processing of palm oil  EFB. If the cost of palm oil plantation operations can be reduced, the greater the benefits. Biochar is a palm oil EFB processing product that can be used to reduce fertilizer requirements in the palm oil plantation. Biochar production using pyrolysis as shown below.
 
In the process of pyrolysis, besides producing the main product in the form of biochar, then biooil and syngas are also produced. The biooil and syngas are then used as fuel generator to produce electricity. In palm oil mills or CPO mills, fiber waste is also commonly found. The fiber waste is often just piled up and never utilized so it tends to pollute the environment. Though these fibers can be made pellets for export and become fuel for power plants. In addition, currently millions of hectares of old palm oil plantations in Indonesia need to be immediately replanting. Millions of tons of old oil palm trunks are also potential for pellet production. If old oil palm trunks are only left in the plantation so they rot and decay, then it will become lava media and subsequently become a beetle which actually disrupts productive palm oil plantations as well as other plantations, for more details read here. The production of pellets from fiber or palm trunks requires electricity and this can be supplied from the pyrolysis of palm oil EFB like the scheme above. Although palm oil mills also produce electricity, but generally only for the purpose of CPO production, so it is not enough for the production of fiber pellets and oil palm trunk pellets (OPT pellets).