Senin, 29 November 2021

Biochar for Coconut Plantation

The productivity of Indonesian coconuts is decreasing so that even though it has the largest coconut plantation area in the world. This of course makes the land less productive and the production from coconut plantations is also low. As a comparison, the productivity of Indian coconut reaches 300 grains per tree or 7.5 times that of Indonesia, which averages only 40 grains per tree per year. In addition, the number of coconut plantations that must be replanted is very large and is not proportional to the speed of replanting. Due to the lack of maintenance, there were also many areas of damaged coconut plantations, which in total reached hundreds of thousands hectares.

Indonesia has experienced the critical condition of coconut and now many coconut producing countries in the Asia Pacific region are experiencing a similar condition. Most of the coconut trees that exist are trees planted in the decade after the first world war or in the 1930s, even though the age of the coconut is around 80 years. This means that the tree is more than 80 years old or has passed its productive period. FAO has even given this warning since 2013. As a consequence, industries are experiencing a severe shortage of raw material supplies amid the increasing demand for coconut-based products, as experienced by the Sambu Group. Sambu group is the largest coconut industry in Indonesia which is located in Riau which has had to buy the coconut raw materials from West Kalimantan province in the last two years. Though Riau province itself is the largest coconut producer in Indonesia, especially Indragiri Hilir regency.

Overcoming the crisis, of course, takes time and is neither fast nor easy. A number of structured, systematic and massive efforts need to be done consistently to get optimal results and according to goals. As a product which is mainly for food and added all its parts that can be utilized, overcoming the crisis of coconut plantations or the upstream sector of the coconut industry is important. In addition, the expansion of the coconut plantation area also needs to be increased to around 6 million hectares so that the supply for industry is sufficient, in comparison Indonesia's palm oil plantations have reached around 14 million hectares. Of course that is the next step after replanting and repairing damaged coconut plantations can be overcomed. 

 To increase coconut productivity, apart from the use of superior seeds, there are also adequate agricultural cultivation techniques. It is very important to improve soil quality so that plants can optimize nutrient uptake. No matter how good the seeds are, if the soil quality is low and farming techniques or cultivation techniques are perfunctory, the results will also not be optimal. For example, on acid soils that make nutrient absorption low and also the soil microbial activity, whatever the plant will not grow optimally. Biochar as a soil amendment is effective and efficient to improve the quality of the coconut plantation soil. Although coconut is a plant that is resistant to salinity, a decrease in salinity will also have a good impact on the coconut tree, and this can also be done with the application of biochar.

Like palm oil, coconut industrialization should also be possible. With this industrialization, the production process becomes efficient and all the coconut fruit harvested from the plantation can be processed all. Population growth that continues to increase and it is estimated that the world's population will reach around 10 billion by 2050 certainly requires sufficient food and various other supporting things such as edible oil and other coconut-derived products. Pyrolysis technology is very good for use in the coconut processing industry. This is in addition to biochar as the main product of pyrolysis with its main use in coconut plantations, excess energy pyrolysis can be used for various needs of the coconut processing industry, both in the form of heat and electricity. Coconut processing products are much more numerous and varied than palm oil. An industry will also need a continuous supply of raw materials with a certain amount and this means that the performance level of its coconut plantations must be maintained in such a way as to meet the needs of the industry and biochar application is the right solution. 

Kamis, 25 November 2021

Biochar as a Solution to Deforestation in Indonesian Palm Oil Plantations

Palm oil trees are not native to Indonesia but come from West Africa and were brought by the Dutch colonialists in the mid 19th century. At first they brought 4 grains and planted them in the Bogor Botanical Garden which is now a palm oil monument. The first palm oil plantation were established in Indonesia in the early 1900's in North Sumatra. The development of the palm oil industry and its subsequent plantations is very rapid, especially in the last 10 years and it is currently estimated that the area of Indonesian palm oil plantations reaches 15 million hectares. As the largest vegetable oil-producing plant in the world and the area of palm oil plantations is also the largest in the world, of course, palm oil has a strategic value in the Indonesian economy. The average rate of growth for Indonesian palm oil plantations is 6.5% per year or the equivalent of about 500 thousands up to 1 million hectares per year for the last 5 years, while the increase in palm oil fruit production or FFB (fresh fruit bunches) is only 11% in average. In fact, the largest increase occurred in 2017 which increased by 2.8 million hectares. From 2015 to 2019, the total area of palm oil increased by 3.7 million hectares. Extensification or expansion of palm oil plantations turned out to be many "accused" and became the world's spotlight as from the conversion of forest land functions, so that there was a lot of deforestation to be converted into palm oil plantations.

Pressure from the European Union in particular, due to these conditions worsened the image of Indonesian palm oil which in turn affected the selling price of palm oil, both CPO (crude palm oil) and its derivative products. Improving the image is also not easy. One of the effective measures is to stop the extensification effort so that forest land remains as forest land and does not turn into palm oil plantations. Biochar can be an effective solution to this problem. By increasing the productivity of fresh fruit bunches (FFB) from the usage of biochar, new palm oil plantations do not need to be opened again. Assuming an average productivity increase of 20% occurs, CPO production will also increase by 20% or equivalent to 2 million tons. The increase would be equivalent to new land clearing of more than 2 million hectares. Certainly not a small land area. With the 20% increase in production, it is very likely that the national needs for CPO needs have been met and the same goes for the export market.

With the extensification of palm oil land of more than 1 million per hectare every year but the increase in palm oil fruit (FFB/fresh fruit bunch) production is only 11%, it is certainly less attractive and must be avoided, especially when the world's attention on deforestation is getting stronger. This also indicates the low productivity of the palm oil plantations. In fact, by improving soil quality, the productivity of palm oil fruit can be significantly increased and the clearing of new land for palm oil plantations can be avoided. Biomass wastes in palm oil plantations and in palm oil mills can be used for the production of biochar.

In palm oil mills, this biomass waste is easier to process in large quantities, especially empty fruit bunches (EFB). An average palm oil mill can produce 200 tons of waste per day of EFB. Meanwhile, in palm oil plantations, biomass waste, such as palm fronds, leaves and stems, is the raw material for the production of biochar. Palm oil trunks even have a lot of negative impacts when they are not treated adequately or are only left to rot in the plantation, giving rise to horn beetle pests, for more details read here. Optimizing the utilization of biomass waste has multiple benefits, not only preventing environmental pollution by the waste, and can be described as the scheme below.

In terms of technology, biochar production technology is also very varied, from simple technology (low tech, low cost) that is cheap to advanced high technology that is efficient, precise process control but at a higher price. In the palm oil mill, it will be effective to use high technology so that it can be integrated with the operations of the palm oil mill. The excess energy from the pyrolysis process will also replace boiler fuel which has been using fiber and palm kernel shells (PKS). There are indeed many advantages of palm oil mills when doing the production of biochar, for more details, please read here. Production of biochar with empty fruit bunches or EFB biochar is also more profitable than EFB pellets, a more detailed explanation can be read here. Meanwhile, for people who have palm oil plantations as part of society palm oil producers (Plasma) or independent plantations, they can use simple technology (low tech, low cost) for the production of biochar. Biochar production in a simple way can also take advantage of excess energy for various small business activities such as those carried out in Tanzania, Africa. In this way, the community in addition to producing biochar also gets a source of energy including reducing the use of firewood which can be obtained from cutting down trees in protected forests or reducing deforestation pressures.

Fertilizer is the highest cost component in the palm oil plantation operations. Besides being able to increase the productivity of palm oil fruit or FFB, Biochar can also reduce the need for the use of fertilizers. An increase in soil pH makes nutrients easily absorbed by palm oil trees and also increases soil microbial activity which increases fertility is one of the benefits of using biochar. And when the performance of the productivity level of palm oil plantations has been able to be achieved and maintained, a number of other improvements can also be made. From the industry point of view, raw materials are a vital factor in terms of availability, continuity of supply and quality, including palm oil mills. Moreover, the plantation aspect of CPO production holds a portion of 80% while the factory or the mill aspect is only 20%. This confirms that the plantation aspect plays a vital role in the supply of these raw materials, so that efforts to maximize productivity, including maintaining productivity level performance, are very important and a top priority. Meanwhile, the change in palm oil plantations from monoculture to polyculture (mixed plantation) is one of the further improvement that can be made. Extensive monoculture plantations have the potential to be susceptible to disease, so they need to be avoided. Technically, how much monoculture area is still effective, especially for palm oil plantations, there are no convincing findings. 

Rabu, 24 November 2021

Utilization of Excess Energy from Biochar Production with Pyrolysis

Most of the production equipments for biochar are currently obsolete, so that the productivity and quality of the products produced are low, also causing environmental problems, namely air pollution. In equipment with this technology, the production process is also not running efficiently, indicated by the large amount of energy or heat loss so that it is less profitable. Slow pyrolysis technology is the best technology for biochar production because it maximizes the production of a solid fraction (biochar). Meanwhile, other thermal technology group are not so suitable for biochar production, for example fast pyrolysis, the main objective of which is to maximize its liquid product or biooil, gasification is the main objective of maximizing gas or syngas product as well as hydrothermal carbonization (HTC) or wet pyrolysis requiring high pressure operating conditions so that it is difficult to be applied. Modern slow pyrolysis technology will operate autothermal / self sustain fuel, safe, good process control and energy management, so that in this way in addition to energy being used for the pyrolysis process itself, excess energy can also be used for other needs such as electricity or heat production.

 There are three main variables for this pyrolysis process, namely heating rate, duration / residence time and temperature. The quality and quantity of biochar are determined by these process variables. For example, biochar production with a temperature of less than 400 C will produce acidic biochar, while biochar production above this temperature will produce alkaline biochar. Currently, the pH of biochar produced ranges from 4 to 12. There are also those who make a category about the pyrolysis temperature for biochar production, namely, low with less than 250 C, medium (250 - 500 C), high with more than 500 C. According to some researches fixed carbon also increased from 56% to 93% at 300 and 800 C pyrolysis temperatures. The surface area also increased from 120 m2 / gram at 400 C to 460 m2 / gram at 900 C. 

And indeed, basically the quality and quantity of biochar is determined by the raw materials used and the conditions of the production process, especially the pyrolysis. In fact, to ensure the quality of biochar, all aspects need to be considered such as raw materials and production processes such as the pyrolysis operating temperature should not be more than 20%, interruptions when production are allowed as long as the conditions of subsequent production parameters are maintained the same as before the restart. The composition of the raw material should not fluctuate more than 15%. And for modern pyrolysis equipment, the excess energy must be utilized with an estimated 35-60% of the energy from the biomass raw material found in pyrolysis gas. A number of agricultural waste processings can use the pyrolysis optimally, including:

 1. Palm Oil Industry

The use of pyrolysis technology for palm oil companies, especially in Indonesia, is currently ideal. This is because palm oil mills or CPO mills produce a lot of solid waste biomass namely, empty fruit bunches/EFB, fiber and palm kernel shell. And because palm kernel shell / PKS has a lot of demand both from within and outside the country for industrial fuel and power plants, this PKS should not be used as raw material for pyrolysis or biochar production, but can be directly used as a trading commodity.  The EFB and fiber are used as raw material for biochar and then the biochar is used to improve the soil quality of palm oil plantation so that fresh fruit bunch or FFB productivity increases. Excess energy from pyrolysis is then used as boiler fuel so that it can reduce or even replace all PKS as the the boiler fuel. And because the boiler fuel is replaced with the excess energy pyrolysis, so can be  all of the PKS can be sold. 

2. Integrated Coconut Industry

Products from coconut processing such as copra, dessicated coconut, and nata de coco require heat in the production process. Coconut shell charcoal is also a favorite charcoal with a large market demand. The charcoal will usually be further processed into briquettes for energy and activated carbon for various industries. For biochar production, coconut industrial wastes such as coir/fiber, bunch and midrib can be used. Excess energy of pyrolysis can be used for the production of the above products and other advanced products. The low productivity of Indonesian coconut production needs to be improved, one of which is by improving soil quality with biochar. In addition, there are so many coconut plantations in Indonesia that need to be replanted so that improving soil quality to achieve the desired production is increasingly important. 

3. Corn Plantation

Efforts to increase food products need to be taken seriously, this can be done in two ways, first by expanding the land or making new rice paddy fields for production and the second by improving the quality of existing land so that productivity will increase. Biochar is very effective and efficient for the second method above. Besides being used as a human food source, corn is also used for animal feed. With the projection of the human population continuing to increase, the need for food either directly by consuming corn or indirectly from livestock such as meat and eggs. Poultry or chicken feed production ranks first of other animal feed production, or in the world almost half of the animal feed produced is chicken feed. Corn cobs and husks are agricultural waste that can be used for biochar production. Excess energy from the pyrolysis process can be used for drying corn and other advanced processes.

4. Rice Paddy Farming 

Rice or paddy is the staple food of most of the Indonesian population. The area of irrigated rice fields is decreasing throughout the year. This encourages the use of non-irrigated rice fields or dry land for the production of this rice. Biochar is able to improve the quality of dry land soils, such as in corn farming. Rice husks are rice paddy agricultural waste that can be used for biochar production. Excess energy from rice husk pyrolysis can be used for drying the rice paddy itself so that it becomes dry grain ready to be milled, or for other purposes. With the improvement of soil quality, rice productivity can be increased and it is not impossible that food self-sufficiency, especially rice, can be achieved, as has been achieved by Indonesia some time ago.

Biochar For Date Palm Plantations

Biochar is increasingly being used as a soil amendment with the aim of improving the physical, chemical and biological properties of the soil, and reducing the concentration of greenhouse gases from the atmosphere. In date palm plantations which are mostly planted in dry and sandy areas, the use of biochar will especially increase the ability of water and nutrients holding capacity, meaning that the evaporation of groundwater can also be reduced and nutrient loss for date palms can also be reduced. This of course is very beneficial for the date palm tree. Waste from date palm plantations such as midribs, seeds and leaves can be used as raw material for the biochar. The impact or positive results of the use of biochar have been reported from enormous of studies and experiments. These results are improvements in the physical, chemical and biological properties of the soil which ultimately result in the quality and productivity of the fruit yield.

 Every year, it is estimated that each date palm tree produces 33 kg of green waste or 20 kg of dry biomass waste. Currently, it is estimated that date palms around the world reach 120 million trees with a biomass waste potential of 4 billion tonnes of green waste or 2.4 billion dry and can be converted into biochar into 800 million tonnes of biochar. The 10 largest date producing countries are Egypt, Iran, Saudi Arabia, Algeria, Iraq, Pakistan, Sudan, South Sudan, Oman and the United Arab Emirates. The use of modern pyrolysis equipment for processing biomass waste into biochar, also produces excess energy for heat or electricity production which can be used for various purposes. Location of date palm plantations in rural areas can use electricity or store this energy for other purposes such as cooking. The energy storage can be done with large or small tanks for the needs of residents in that location. By utilizing the excess energy from the pyrolysis process, environmental damage such as illegal logging can be minimized. Dry and arid are areas with high evaporation and low rainfall, and such areas as these occupy 41% of the land surface area on earth. Currently nearly 900 million people inhabit this area.

Improved soil quality will result in higher crop productivity. The better the quality of the soil that can be cultivated, the better the productivity will be. Biochar will enrich soil organic carbon which has important roles, including reducing plant nutrient loss, increasing soil aggregation, reducing soil erosion, and increasing water holding capacity. Each plant has its own characteristics regarding the growing medium and environmental condition. Improving the quality of the soil will certainly increase the productivity of dates and even increase the quality of the fruit.   

Minggu, 21 November 2021

Increasing Energy Efficiency in Palm Oil Mill Operations Using Pyrolysis

Energy utilization in the form of steam production which is then used for electricity production through steam turbines and generators, as well as the use of steam for steamming (sterilizing) fresh fruit bunches (FFB) are the main things in palm oil mill operations. This is because the need for electrical energy to power various mechanical equipment in the mill comes entirely from this electricity production. Electricity and steam for industrial processing are grouped under the utilities that support that industry. Meanwhile, in the sterilization process or the boiling of FFB, steam besides stopping the development of FFA (free fatty acid) and facilitating the threshing will also facilitate the CPO extraction process and processing the kernel (palm kernel). To produce steam and electricity, of course, energy is needed, namely heat. Steam is produced by the boiler in the form of superheated steam to drive steam turbines and generators to produce electricity and then steam from electricity production or low pressure steam is used for steamming (sterilization) of FFB.

The water after being treated so that it becomes BFW (boiler feed water) is then used for the production of steam and electricity. Heat energy to produce steam can be reduced in such a way with the use of a pyrolysis process (which means that it is not ordinary combustion), so that the heat requirement for the boiler furnace is getting smaller. The pyrolysis condenser will produce hot water so that it becomes preheating for the boiler. In pyrolysis a condenser is used to separate bioil and syngas (uncondensable gas). Preheating from the condensation process of the pyrolysis unit will then go to stage 2 preheating in the economizer of the boiler unit. Thus the temperature of the water entering the upper drum on the boiler is high enough, and the heat requirement to become superheated steam will be reduced. The palm oil mill uses a water tube type boiler as is commonly used in large industries and not a fire tube which is in the form of a shell and tube type heat exchanger with the tube submerged in water so that it does not overheat. In a water tube type boiler, it consists of an upper and lower drum (mud drum) which is connected to a pipe. The lower drum and water tube are fully filled with water, while the upper drum is only partially filled. With this arrangement, steam will pass through the mechanical separator on the upper drum, flow to the superheater and exit the boiler. Efficiency is the key word in production, including the use of energy in the production process of CPO or palm oil mills. The rule of thumb is an increase of 10 C in BFW is equivalent to increasing 1% boiler efficiency.

Excess energy from the pyrolysis process should be used for fuel or energy sources in the boiler furnace. The use of excess energy from pyrolysis will also produce environmentally friendly flue gas emissions because the combustion of liquid and gaseous fuels will be cleaner than solid fuels. In this way, the palm kernel shell, which has been used for boiler fuel, can no longer be used. All these palm kernel shells or PKS can be sold directly and even exported to Japan and Korea. Of course, be a separate source of additional income. Palm kernel shells or PKS are competitors for wood pellets in the global market because they have many similar properties, but because palm kernel shells come from waste or palm oil mill sideproducts, the price can be cheaper, more information can be read here. The use of slow pyrolysis for biochar production is the best option compared to similar technologies such as fast pyrolysis and gasification, more details can be read here. Palm oil mills or companies will get a lot of benefits from biochar production, for more details can be read here. 

Production of EFB Pellet EFB or EFB Biochar ?

One of the main obstacles for palm oil mills to develop their business is the availability of electricity. With locations that are generally located in remote areas in the middle of palm oil plantations, palm oil mills do not get electricity supply from PLN (Indonesia State Owned Electricity Company). Eventhough electricity is very important in a production process, such as in the production of EFB pellets. Even though empty bunches or EFB in general are an environmental problem for palm oil mills. If every ton / hour of EFB pellet production takes 300 KW, then for production of 10 tonnes / hour (5,000 tonnes / month) 3 MW of electricity is needed, export of biomass fuels such as wood pellets and PKS (palm kernel shell)  with bulk shipments usually requires 10 thousand tons / shipment. So if the production of EFB pellets is planned for 10 thousand tons / month so that every month can export the EFB pellets, the factory capacity or EFB pellet production is 20 tons / hour (10,000 tons / month) 6 MW of electricity is needed. For palm oil mills, utilizing liquid waste or POME to become biogas is a potential source of energy for the production of electricity. However, with a palm oil mill capacity of 30 tonnes of FFB / hour, only about 1 MW of electricity is generated from POME biogas, so to produce 6 MW of palm oil mills with a capacity of 6 x 30 tonnes of FFB / hour are generated equal to 180 tonnes of FFB / hour. In fact, the average palm oil mill has a capacity of 45 - 60 tonnes of FFB / hour, so it is impossible to generate 6 MW of electricity from the palm oil mill's POME biogas.

The use of EFB pellets is the same as wood pellets and PKS is mainly for power generation. All three are biomass fuels. The high chlorine and potassium content in empty palm fruit bunches or EFB makes their use limited to power plants due to corrosion and scale causes. Not all power plants can use EFB pellets at large capacities or quantities. The use of coal-fired power plants with pulverized combustion technology can only be used with a small ratio or an estimate of less than 5%, but can be used more or even 100% in fluidized bed and stoker types of power plants. The capacity of fluidized bed and stoker type PLTU is generally much smaller than pulverized combustion.

When the biomass source is managed properly, the use of biomass fuel is an environmentally friendly and sustainable fuel. Biomass fuels like this are carbon neutral fuels, because they do not increase the concentration of CO2 in the atmosphere. This is because the biomass as a fuel source comes from plants whose growth is from the photosynthesis process, one of which uses CO2 from the atmosphere, so that when the biomass is burned, there is practically no addition of CO2 to the atmosphere. In general, there are 2 ways to overcome the CO2 concentration in the atmosphere which causes climate change and global warming, namely the carbon neutral scenario and the carbon negative scenario. In a carbon negative scenario, CO2 in the atmosphere will be captured and absorbed so that it is no longer released and the concentration of CO2 in the atmosphere can be reduced, as in the biochar application below. 

Whereas in the production of biochar with pyrolysis, besides not requiring a large amount of electrical power for its operation, electricity can also be generated from the use of excess energy from pyrolysis itself. By using the excess energy from pyrolysis, the palm oil mill boiler fuel does not need to use palm kernel shells and fiber. The use of gas or liquid fuels from the excess energy of the pyrolysis process also makes burning emissions cleaner. To achieve more complete combustion, gaseous or liquid fuels are better than solid fuels. Palm kernel shells so that everything can be sold or even exported. The biochar product applied to palm oil plantations will also improve the quality of the soil so that fertilizer use can be reduced and the productivity of palm oil fruit will increase. Biochar also absorbs CO2 from the atmosphere so that the use of biochar in large palm oil plantations means that with massive applications it can also be used for carbon trading. Recent developments indicate that the use of biochar is increasingly widespread, such as biomaterials for construction, transportation, plastics, packaging, furniture and so on. The use of biomaterials for these products means substituting the use of fossil-derived raw materials. 

So based on the above review, the production of biochar with pyrolysis is more profitable and easy to implement for palm oil mills compared to EFB pellet production. The addition of electricity production with a large capacity and the availability of sufficient raw materials is not easy and cheap for the average palm oil mill in Indonesia with a capacity of 45 - 60 tons of FFB / hour. Whereas in the production of biochar with pyrolysis, a certain amount of energy is produced which can be used for various purposes and the use of biochar is also multi-beneficial. Palm oil mills should consider this in particular in the aspects of waste management, plantation productivity, environmental aspects and business development, for more read here. Based on experience, the cost structure of the CPO or palm oil production business consists of about 80% of the cost of production is the cost of crops or plantation aspects, while the other 20% is the cost of processing or mill aspects. And the highest cost aspect of palm oil plantations is the cost of fertilization so that if the need for fertilizer can be reduced and the productivity of palm oil can be increased, of course it is very profitable, biochar is effective and efficient to use for this. 

Sabtu, 20 November 2021

The Urgency of Biochar Application on Palm Oil Plantations in Indonesia

The large number of acidic soils in Indonesia that are used for palm oil plantations makes the productivity of palm oil fruit or the resulting FFB (fresh fruit bunch) not optimal. The acid soil covers the largest dryland area in Indonesia. It occupies approximately 55% of the total land area (191.09 million ha) in Indonesia. About 107.36 million ha of all Indonesian acid soils is classified as dryland acid soils and the rest (14.93 million ha) as peat soil. Acid soils in Indonesia are distributed amongst the big islands, such as Kalimantan (39.42%), Sumatera (28.81%), Papua (18.03%), Java (7.77%), and Sulawesi (6.95%). Acidic soils with low pH make nutrient absorption low in plants and so do soil microbial activity, which plays a large role in soil fertility. This condition should not be ignored because besides making the cultivation of palm oil plantations not optimal, there will also be a lot of fertilizer used. This makes the operational costs of  palm oil plantation operation high. Biochar is a biomass pyrolysis product that is effective and efficient in overcoming these problems. With the abundant amount of biomass waste produced by palm oil mills or CPO mills as biochar raw materials, efforts to improve the quality of plantation soil should be easy to do and have even become the operational standard for these plantations. But the fact is not.

 

Why hasn't biochar been used to improve soil quality and thus increase the production of palm oil fruit or FFB? The lack of information and education about the benefits and uses of biochar are the main factor. This of course makes the application of biochar in palm oil plantations not yet done even though palm oil mills have abundant biomass waste such as empty palm fruit bunches (EFB) and fiber which are generally not used and cause environmental problems. The priority for processing EFB compared to other products such as EFB pellets or compost also needs separate considerations. The best choice, of course, is based on a comprehensive study according to the characteristics of the business or business will be built. Consider not only short-term economic benefits, but also environmental and long-term benefits is an important thing. 

 

Quantitatively, an increase in the production of palm oil fruit or FFB, an increase of at least 20% with the application of biochar is something that is normal. And a 20% increase in fruit production will also result in a big profit. Productivity of a number of other agricultural commodities can be increased by 30%, 40% or even more than 100%. The low productivity of palm oil fruit in Indonesia can be increased by the application of biochar, which is particularly effective in improving the soil quality in the palm oil plantations. Moreover, about 80% of the components of the cost of producing crude palm oil (CPO) come from the plantations, and 20% in the processing sector (palm oil mills). The operational costs of palm oil mill plantations, especially fertilizers, can also be reduced by the use of biochar. The priority of liquid biofuel development will also get better if the volume of biofuel raw materials such as CPO increases. This shows the strategic role of biochar. Apart from that from the aspect of climate change, biochar will also absorb CO2 concentrations in the atmosphere or reduce the concentration of greenhouse gases, as a solution to today's world problems.  


 

Meanwhile, from the side of the palm oil mill, another advantage obtained from biochar production is the use of excess energy from the pyrolysis process or the production of biochar as an energy source for the boiler. Boiler feed water (BFW) will also be preheated twice when it is used for cooling in the pyrolysis condenser and then the economizer on the boiler. In this way, the energy needed by the boiler decreases. When the boiler energy source uses the energy source from pyrolysis, this means that the palm kernel shell (PKS) can be taken and used for other things and can even be sold directly for local and export markets. The main obstacle to business development in the palm oil industry is the availability of energy source namely electricity. If the energy source is available, the development of palm oil-based businesses is very open and varied, such as the production of CPO derivatives, palm kernel shell processing, PKO production, PKO derivative production, biomass power plants and so on.  

Modern Ruminant Livestock Paradigm: Reducing Methane Production and Increasing Feed Efficiency

 The gases in the atmosphere that can capture the sun's heat are called greenhouse gases (GHG). Which includes greenhouse gases in the atmosphere, among others, are carbon dioxide (CO2), nitrogen dioxide (N2O), methane (CH4), and freon (SF6, HFC and PFC). Methane gas (CH4) is a dangerous gas for the earth's atmosphere and one of the greenhouse gas groups above because of the destructive power of methane gas 21 times carbon dioxide (CO2). This requires efforts to prevent methane gas and reduce its production. An example is the use of POME waste or palm oil mill effluent for biogas production. In this way, methane occurring in the open air (aerobic) will be avoided (methane avoidance scenario) and will not be released into the atmosphere with the biogas unit. The livestock sector also has the potential to produce, namely the group of ruminant farms or ruminant animals. The methane is produced in the ruminant's rumen as part of the digestion process. It is estimated that the contribution of methane from ruminant livestock is dominant and of course it needs to be reduced. The production of methane gas (CH4) besides being an environmental problem also causes a lot of energy loss in livestock. And it turns out that there is a process of reducing methane production which simultaneously improves health and increases body weight and milk production.

Large ruminant farms should be more aware of this condition and have a greater incentive to reduce methane production. Biochar is a feed supplement that can be used for the above purposes. The use of 1-3% biochar from dry feed ingredients has been shown to significantly increase body weight gain in beef cattle, as well as milk production in dairy cows. Experiments in Australia on beef cattle for 2 months have given a weight gain of 10% compared to those who do not use biochar. As for dairy cows, it has provided a profit of $ 70,000 per year. For more details, read here. Meanwhile, the reduction in methane gas emissions is estimated at 29% from the use of biochar. Once paddle 2-3 islands, so the saying goes.

Another effect of using biochar as a feed additive is that livestock manure becomes denser and less smelly. Biochar can also be used alone to deal with the smell and viscosity of livestock manure, so that the cage becomes cleaner and does not smell strong. In addition, if the manure is used for production, the biogas production will also increase, for more details, please read here. The composted digestate will also produce better organic fertilizer (compost) because of the additional biochar. 

The quality of biochar is also very important, especially for animal feed supplements. Meat and milk are livestock production to meet human food needs, so that it will also affect humans in the end. The quality of biochar is determined by the raw materials used and the production process carried out. This indicates that not all biochar has the same quality, for example biochar from agricultural wastes with high ash content with traditional processes, with wood biomass raw materials with a small ash content and modern processes, of course the results are different, for example using the same modern technology will have different results. The differences mainly lie in their physical chemistry properties. 

Biochar production should also be designed according to its objectives, for example the biochar feed supplement above must use selected biomass raw materials and modern processes so that the quality is stable and maintained. Meanwhile, the reference for biochar quality can be OMRI, USDA or IBI. World feed livestock associations or organizations such as FEFAC, IFIF and AFIA are currently very concerned about safety and sustainability, so this can be in line with biochar as a feed additive. Biochar as a feed additive, especially dairy cattle, has been accepted by almost all European Union countries. Meanwhile, for purposes such as reducing odors and the dilution of impurities, biochar is produced from any biomass and even by using simple technology (low tech).  

Kamis, 18 November 2021

Biochar for Chicken Farming

With the fast growth of the human population in the world and in line with the need for food or more specifically protein in the form of meat and eggs, the chicken farming industry has become a heavy burden. The projection of protein demand in 2050 is estimated to increase by 69% and almost half of it will come from chicken farms. The main focus of research and development in chicken farming today is how to meet the protein needs above. And that is only possible by developing new technologies to increase the efficiency of the use of feed nutrients in these chickens.

In 2017, global animal feed production has exceeded 1 billion tonnes for the first time and the livestock industry sector accounts for almost half of it, namely 44% of the total feed production or means more than 440 million tonnes alone. With the growth in world population, there is no doubt that the need for feed will also continue to increase. In addition, there is a real environmental impact on the dependence of soybeans from the United States and Brazil as a source of protein for these poultry or chicken farms. Environmental problems are also getting bigger with the presence of nitrogen compounds from the farm in the water flow and pollution of ammonia gas emissions (NH3). In addition, the use of feed with excessive protein content increases the tendency for disease to occur and increases the need for water by the chickens, which causes the problem of dung to become wet and soggy.

 There has also been an increase in the use of other protein sources as ingredients for chicken feed, such as legume, peas and so on. But currently its use is still limited due to the compatibility of amino acids, mycotoxins and ease of pelletization. Feed pellet technology is a spectacular 20th century invention that continues to evolve today, for more details read here. The use of low protein feed and the high absorption of these nutrients can be a solution to the problem of ammonia pollution. Biochar can be added as a feed supplement (feed additive) to increase the efficiency of the feed conversion. Biochar in the internal body of the chicken will be able to deactivate a number of toxins and activate microbes either in the chicken intestine or improve the digestive system of the animal. This can be indicated by the rapidly increasing vitality of livestock.

Meanwhile, external factors that affect the health and productivity of chickens are the cleanliness of the cage. Feed factors and house hygiene including air circulation are very important to maintain the survival and productivity level of the chicken farm. The more population with a high density of chicken farms, the greater the pressure on disease. The high nutrient or protein content in chicken manure plus humid conditions is an ideal location for a number of germs to breed. In addition, ammonia emissions are also very damaging to the environment because they will form nitrous oxide (N2O), acidifying soil and eutrophication of waters.

The use of biochar as a feed additive and treatment of manure will minimize the two main problems mentioned above, namely livestock health and environmental pollution. In the end, with the health of the livestock is maintained, the level of livestock productivity is also well maintained. The quality of biochar for feed additives is also different from that of manure treatments. This is of course because the main uses and purposes are different. Biochar for the feed additive needs to be designed in such a way that the grade as a feed additive is met, such as by using selected biomass raw materials, modern pyrolysis technology so that control of the production process can be carried out properly from handling to packaging. As for the use of livestock manure treatment, the quality of biochar is lower, including the use of biomass raw materials, pyrolysis technology and so on. For more details, like the diagram below.

 According to a number of studies, adding up to 0.6% biochar in feed increases chicken growth by an average of 17% and it is recommended to mix 0.4-0.6% biochar in the daily feed. Broiler chickens that were given biochar supplements reportedly increased their body weight by 5-10%. If 0.5% of biochar is used as a source of chicken feed additives for world chicken or poultry feed production, the potential need for biochar is 220,000 tonnes annually. And if the chicken manure is used for energy production in the biogas unit, the addition of biochar increases methane (CH4) production and the compost quality of the digestate.     

Production of Electricity and Biochar from Pineapple Plantation Waste

Besides being able to be processed into briquettes or in more detail, read here, pineapple plantation waste can also be used for electricity and biochar production. The use of biochar on pineapple plantation land will increase fertility and improve soil quality so that it will also increase the productivity of the pineapple fruit. The use of biochar on dry land such as pineapple plantations will be more effective so that the benefits will be even more real. Biochar that can last up to hundreds of years in the soil will provide long-term benefits for pineapple plantation owners. The era in the future that tends towards efficient agriculture or precision agriculture will also produce less waste or even zero waste. Agricultural wastes that have been a lot of environmental problems will be reduced and processed into added value, environmentally friendly and sustainable materials such as biochar production.

In large pineapple plantations, the amount of pineapple waste produced is also large. Besides producing biochar, pyrolysis of pineapple waste will also generate electricity. Electricity as a form of energy that is easily converted to various other forms of energy is certainly very useful, especially the pineapple industry. Pineapple processing can use the electricity generated, thereby reducing or even eliminating the need for external electricity. But it is possible that if the pineapple industry needs heat more than electricity, the excess energy from pyrolysis does not need to be converted into electricity but only heat is enough and this is easier and simpler. Of course, these things also further reduce the production costs of these pineapple-based products, thus providing even greater profit.

 There are many products from the pineapple industry, including candied pineapple, pineapple jam, pineapple paste, pineapple chips, pineapple juice, pineapple juice probiotics, pineapple jelly, canned pineapple, and dried fruit. As one fruit that is quite popular throughout the world, the demand for pineapple is also increasing. With the prediction of the world's population reaching nearly 10 billion by 2050, the need for food, especially fruit, will also increase. Pineapple peels are also commonly used as animal feed, especially cattle, and cow dung is used for biogas production. The addition of biochar to cow dung for biogas will increase biogas production, more details can be read here and the sideproduct in the form of digestate which is then composted will be of better quality in the presence of biochar. Biochar makes the nutrients in compost not easy washed but is released slowly (slow release fertilizer).  

Rabu, 17 November 2021

Benefits of Palm Oil Company When Produce Biochar

There are at least four things that become motivation for biochar production, namely as in the chart above. There are a number of slices that make the impact of biochar application multi-benefits, which is very much in line with today's world problems, namely climate change and global warming. Biochar has also been accepted as an instrument to reduce the concentration of CO2 in the atmosphere which causes the two big problems above, namely in 2018 biochar was included in the Intergovermental Panel on Climate Change (IPCC) as one of the negative emissions technologies (NETs). Biochar application is a carbon negative scenario because biochar can absorb CO2 from the atmosphere. This is slightly different from the use of biomass fuels such as wood pellets, wood briquette and palm kernel shell (PKS) in industrial boilers or power plants, which are carbon neutral scenarios. Indeed, basically there are 3 big scenarios to reduce the concentration of CO2 in the atmosphere, namely increasing the efficiency of equipment that uses fossil fuels, using carbon neutral fuels and carbon negative scenarios such as biochar.

Palm oil trees are known to require a lot of water and fertilizer to maintain the life sustainability and productivity of their fruit, so practical efforts in the form of increasing fertilizer nutrient efficiency and increasing fruit productivity are important. Besides that, palm oil mills produce a lot of biomass waste, especially empty fruit bunches (EFB ) and mesocarp fiber, which are very potential for biochar raw materials. The biochar is then applied in palm oil plantations which can be used with chemical fertilizers or with compost / organic fertilizers.

Pyrolysis and gasification technologies are commonly used for the production of the biochar. Apart from producing biochar by pyrolysis or gasification, energy is also produced which can be used for the business development of the palm oil industry or for electricity production. Production of PKO (Palm kernel oil) from kernel processing at KCP (kernel crushing plant) or production of torrefied PKS from PKS processing with torrefaction can be done by utilizing excess energy from the production of biochar. Most of the palm oil mills or CPO mills do not have kernel processing or KCP to produce PKO. And by making torrefied PKS, the caloric value of PKS will increase, it is easy to downsizing (increased grindability), for example in the use of cofiring and does not absorb water (hydrophobic property). In general, palm oil mills will have many advantages, both economically / financially and environmentally, with this biochar production.

Apart from being used for business development like the diagram above, excess energy from pyrolysis or gasification can also be used as boiler fuel in the palm oil mill. In this way the energy to heat the boiler, which is usually with palm kernel shell and mesocarp fiber, can be replaced by energy from pyrolysis or gasification. After that, all of the palm kernel shells / PKS can be sold or exported, thus providing additional profits for the palm oil company. The need for biomass fuel, especially palm kernel shell / PKS, is predicted to increase, both in the domestic market and in the export market. Japan is currently the largest consumer or user of palm kernel shells and it is predicted that the demand will also increase. Japan will also impose stricter standards on imports of palm kernel shells to ensure environmental sustainability by applying the GGL (Green Gold Label) certification which will be effective starting April 2023. This is like the wood pellets with FSC certification. If anyone is interested in an economic analysis of the use of biochar in palm oil business, please contact us.  

Biochar to Increase Biogas Production

Charcoal (biochar) is the raw material for the production of activated carbon. The production of activated charcoal itself goes through two main processes, namely carbonization (pyrolysis) and activation. The surface area of charcoal (biochar) is also smaller than that of activated carbon, but larger than the raw biomass. The carbonization process increases the surface area of the raw biomass. The ratio of surface area between raw biomass, charcoal and activated charcoal is approximately 25 m2 / gram, 200 m2 / gram, 2000 m2 / gram. The larger the surface area of the biomass material that is inserted into the biogas reactor, the greater the penetration of bacteria into the substrate so that the fermentation process that occurs is more perfect so that biogas production will increase. Biochar itself does not participate in fermentation because the main component is stable carbon, while hemicellulose, cellulose and lignin have been decomposed during the carbonization process.

Another example is the addition of biomass briquettes to the biogas reactor, briquetting processs with high pressure and heat also open pores or expand the surface of the biomass, so that biogas production also increases, for more details, read here. The addition of biomass briquettes to the biogas reactor will also increase the C / N ratio, even biochar and activated charcoal have high carbon (C) content.

Charcoal (biochar) has been widely used in the agricultural world to repair damaged soil / soil amendment and thus increase fertility. Good soil fertility will also increase agricultural production. The biochar becomes a home for soil microbes, so that organic materials or compost will break down more completely and be absorbed by plants more as plant nutrients. The charcoal (biochar) pores are the home for these microbes. The more pores, the more microbes will inhabit the biochar as their “house”. The same principle applies to the biogas unit. Another bonus of using biochar is that it absorbs CO2 from the atmosphere, thereby contributing to lowering the greenhouse gases that cause climate change and global warming.

Research in Germany shows that adding 5% biochar to a biogas reactor increases methane production by 5% - based on the dry matter of biochar to the substrate. But when the amount of biochar became 10%, it turned out that no more methane was added. This shows that the optimum condition for adding biochar is the amount of 5%. The microbes in the biochar increase the volume of microbes in the reactor so that the production of biogas or especially methane also increases up to 5%. Biochar itself is not decomposed in the fermentation process. 

Meanwhile, the addition of biomass briquettes per 1 tonne of briquettes will increase biogas production by 400 Nm3. This is because in the biomass briquettes, both cellulose, hemicellulose and lignin have not been decomposed, thus adding to the substrate in the biogas reactor. Whereas in biochar, both cellulose, hemicellulose and lignin have been decomposed during the thermal carbonization process, so there is practically no additional substrate, but only microbial addition occurs in the biochar pores.

The important thing about the addition of biochar is that the compost or digestate produced is of better quality with the addition of the biochar. Biochar will make the compost which is produced as a slow release organic fertilizer. This further encourages biochar production, especially for palm oil companies that care about environmental issues and even strive for zero waste conditions.

 Palm oil mills have the potential to apply biogas and biochar units. Solid wastes such as empty bunches and mesocarp fiber can be used for biochar production. Palm oil mills can even replace the furnace in the boiler with a gasifier or pyrolyser. This becomes more profitable because in addition to heat energy being used for production of steam which is used for power generation and sterilization of fresh fruit, biochar will also be produced. The biochar produced is then used to increase biogas production and improve the quality of the compost, as well as a fertilizer mixture in palm oil plantations. And even the potential use of biochar to save fertilizer on large palm oil plantations, for more details can be read here.