It's no secret that the waste problem has become a common problem in many places, especially in big cities. The challenge is how to make waste processing unit that zero waste and be profitable? Integration of continuous pyrolysis technology and biogas system is the answer on this. With pyrolysis, organic waste, plastics, and tires will produce specific products with high economic value. When the processing of organic waste are the main products produced charcoal, biooil, and syngas. All of them can be used for energy applications. While the plastic is processed then the primary product is syn crude oil whose quality as petroleum. Processing of scrap tires with pyrolysis will produce syn crude oil like in plastic pyrolysis processing, carbon black, syngas and steel wire.
Selasa, 27 Desember 2011
The concept of Zero Waste MSW Processing Using Continous Pyrolysis Technology and Biogas System
It's no secret that the waste problem has become a common problem in many places, especially in big cities. The challenge is how to make waste processing unit that zero waste and be profitable? Integration of continuous pyrolysis technology and biogas system is the answer on this. With pyrolysis, organic waste, plastics, and tires will produce specific products with high economic value. When the processing of organic waste are the main products produced charcoal, biooil, and syngas. All of them can be used for energy applications. While the plastic is processed then the primary product is syn crude oil whose quality as petroleum. Processing of scrap tires with pyrolysis will produce syn crude oil like in plastic pyrolysis processing, carbon black, syngas and steel wire.
Senin, 31 Oktober 2011
Why Use Pyrolysis to MSW Treatment?

The main difference between the pyrolysis, gasification and incineration: the amount of oxygen that is supplied to thermal reactors. Pyrolysis has advantages in producing gas or oil products from waste that can be used as fuel for its process of pyrolysis.

-If the amount of air: fuel (AFR, air-fuel ratio) = 0, then the process is called pyrolysis.
-If the AFR <1.5 then the process is called gasification.
-If the AFR> 1.5 then it is called the combustion process

-Lower temperature process (400-800 C) so the smaller the investment costs
-Flue-gas emissions below the required threshold.
-All the pyrolysis products have economic value.So that the sustainability of MSW processing is not only dependent on the tipping fee, but rather on the sale of the pyrolysis products.
-Pyrolysis can adjust to the type of feedstock such as pyrolysis of plastic will result in major product syn crude oil, pyrolysis of scrap tires will be produced also syn crude oil, carbon black and syn gas, and so other feedstock. The use according to type of feedstock will increase the economic value of the resulting product significantly. In process aspects this will be considered against the availability of feedstock and selling value of products produced.
Institute of Applied Energy (Tokyo) published in 2004 an analysis of stoker incinerator and pyrolysis plants operating under the same conditions. The analysis revealed that a conventional stoker grate incinerator with a steam turbine has no performance advantage over a pyrolysis plant at any scale.
Temperature Effect in Pyrolysis Process Of Charcoal Quality

Sabtu, 22 Oktober 2011
Eco-friendly Farming with Biochar

Biochar can add moisture and fertility of agricultural land and can exist thousands of years in the ground when used for the reduction of CO2 emissions. Global warming due to increased emissions of CO2 and other greenhouse gases have seized the attention of the world lately. Along with global warming, climate change also occurs, which supported the frequency of climate anomalies such as El Nino causes droughts or La-Nina who encouraged the occurrence of floods.
Reforestation and afforestation efforts to reduce the CO2 content of the air could not be expected to reduce the impact of the global climate. The binding of carbon (carbon sequestration) of agricultural land through the improvement of management practices is one of the main options to reduce emissions of CO2 into the atmosphere. Increased carbon content in soil with the use of ground cover plants, adding mulch, compost or manure managed to improve the productivity of the soil, nutrient supply to the plants, contributing to rapid nutrient cycles, and hold the mineral fertilizer provided. However, the short-term nature of especially in the tropics, because the process of decomposition takes place quickly that organic materials undergo decomposition and mineralization into CO2 within just a few seasons. Therefore the addition of organic matter to be made each year to sustain soil productivity.
Black carbon (C), referred to as biochar, can overcome some limitations in carbon management. The fact that there is, and a variety of research results, pointed out that biochar may add moisture and fertility of agricultural land. In addition, in the context of the reduction of CO2 emissions in the land of ' biochar ' persistent even reported to thousands of years.
Increasing the motivation of the public against the use of organic agricultural ingredients makes the discussion and evaluation of biochar become nore relevant, both as a commodity economy and as a multi-use soil amendment. In soil, biochar provides good habitat for microbes, but not consumed like other organic materials. In the long term ' biochar ' doesn't interfere carbon-nitrogen balance, even able to hold water and nutrients and made more available to plants.
Application of biochar into the soil is new and unique approach to making a container (sink) for atmospheric CO2 in terrestrial ecosystems long term. In the making process, about 50% of the carbon in the raw material will be contained in biochar, then the biological decomposition of biochar, usually less than 20% after 5-10 years.
In addition to reducing emissions and increasing the binding of a greenhouse gas, soil fertility and crop production can also be improved. The two main potential biochar for agriculture is a high affinity of nutrient elements and its endurance. Biochar is more endurance in soils, so all the benefits associated with nutrient retention and soil fertility can run longer than any other organic material normally given.
The endurance of biochar become best choice for reducing the impacts of climate change. Although it can be a source of alternative energy, the benefits of biochar is much greater if it is immersed into the ground in realizing environment-friendly agriculture.
The base material used will affect the properties of biochar itself and have different effects on the productivity of the soil and plants. Raw material production of biochar are mostly agricultural or forestry biomass residues, including pieces of wood, coconut shell, empty fruit bunches, cob corn & rice husks or skin fruit nuts, bark-bast, remnants of a logging business, as well as the organic material the other remakes. Integration of bioenergy production, sustainable agriculture and waste management into an approach in the use of biochar; It is a synergistic effort management and integrated.
The addition of biochar to soil increases availability of major cations and posfor, a total of N and soil cation exchange capacity and finally improving the results. The high availability of nutrient for plants was the result of the increased nutrients directly from the biochar, increased nutrient retention, and change the dynamics of soil microbes. Long-term gains for the availability of nutrients is related to the organic carbon stabilization higher along with the release of nutrient slower than organic material is used.
The role of biochar to the increasing productivity of crops affected by the amount added. Dosage of 0.4 to 8 t C ha-1 was reported to be significantly increases the productivity of between 20-220%. As a simple picture, the production of 50 million tons of grain annually participated generated about 60 million tons is "waste" (straw and rice husks) that can be processed into biochar.
Reforestation and afforestation efforts to reduce the CO2 content of the air could not be expected to reduce the impact of the global climate. The binding of carbon (carbon sequestration) of agricultural land through the improvement of management practices is one of the main options to reduce emissions of CO2 into the atmosphere. Increased carbon content in soil with the use of ground cover plants, adding mulch, compost or manure managed to improve the productivity of the soil, nutrient supply to the plants, contributing to rapid nutrient cycles, and hold the mineral fertilizer provided. However, the short-term nature of especially in the tropics, because the process of decomposition takes place quickly that organic materials undergo decomposition and mineralization into CO2 within just a few seasons. Therefore the addition of organic matter to be made each year to sustain soil productivity.
Black carbon (C), referred to as biochar, can overcome some limitations in carbon management. The fact that there is, and a variety of research results, pointed out that biochar may add moisture and fertility of agricultural land. In addition, in the context of the reduction of CO2 emissions in the land of ' biochar ' persistent even reported to thousands of years.
Increasing the motivation of the public against the use of organic agricultural ingredients makes the discussion and evaluation of biochar become nore relevant, both as a commodity economy and as a multi-use soil amendment. In soil, biochar provides good habitat for microbes, but not consumed like other organic materials. In the long term ' biochar ' doesn't interfere carbon-nitrogen balance, even able to hold water and nutrients and made more available to plants.
Application of biochar into the soil is new and unique approach to making a container (sink) for atmospheric CO2 in terrestrial ecosystems long term. In the making process, about 50% of the carbon in the raw material will be contained in biochar, then the biological decomposition of biochar, usually less than 20% after 5-10 years.
In addition to reducing emissions and increasing the binding of a greenhouse gas, soil fertility and crop production can also be improved. The two main potential biochar for agriculture is a high affinity of nutrient elements and its endurance. Biochar is more endurance in soils, so all the benefits associated with nutrient retention and soil fertility can run longer than any other organic material normally given.
The endurance of biochar become best choice for reducing the impacts of climate change. Although it can be a source of alternative energy, the benefits of biochar is much greater if it is immersed into the ground in realizing environment-friendly agriculture.
The base material used will affect the properties of biochar itself and have different effects on the productivity of the soil and plants. Raw material production of biochar are mostly agricultural or forestry biomass residues, including pieces of wood, coconut shell, empty fruit bunches, cob corn & rice husks or skin fruit nuts, bark-bast, remnants of a logging business, as well as the organic material the other remakes. Integration of bioenergy production, sustainable agriculture and waste management into an approach in the use of biochar; It is a synergistic effort management and integrated.
The addition of biochar to soil increases availability of major cations and posfor, a total of N and soil cation exchange capacity and finally improving the results. The high availability of nutrient for plants was the result of the increased nutrients directly from the biochar, increased nutrient retention, and change the dynamics of soil microbes. Long-term gains for the availability of nutrients is related to the organic carbon stabilization higher along with the release of nutrient slower than organic material is used.
The role of biochar to the increasing productivity of crops affected by the amount added. Dosage of 0.4 to 8 t C ha-1 was reported to be significantly increases the productivity of between 20-220%. As a simple picture, the production of 50 million tons of grain annually participated generated about 60 million tons is "waste" (straw and rice husks) that can be processed into biochar.
Rabu, 28 September 2011
Stop Burning Forest: Convert Biomass Waste Into Energy and Biochar

The tradition of open land for agriculture and plantations by burning the forest is a tradition of environmental and health damage, so it should be promptly discontinued. The smoke produced is also disrupting transportation. In addition to strict regulations that also use technology that can provide maximum benefit, need to be sought and applied. Or by economic review, how the problem is to bring profitable opportunities. Biomass waste generated from clearing land can be utilized for the production of biochar and energy.
CHP engine would be very beneficial to the environment, given the state of Indonesia which some still lack power (only about 60% area get electricity). A JFE pyrolysis unit with a capacity of 200 tons / day INPUT will produce about 60 tons / day of biochar and power 5 MW. Production of biochar with this pyrolysis technology is carbon negative, because biochar produced will absorb carbon dioxide in the atmosphere is greater than the biochar-making process. Biochar is applied again to the farm will provide benefits for soil fertility and sequestration of CO2 from the atmosphere.
JFE continuous pyrolysis technology will provide solutions to those problems. Waste biomass will be converted into biochar and energy for heat and electricity production. The smoke that interfere with vision and breathing are also not going to happen because of exhaust emissions from the pyrolysis plant is well below the emissions standards required. A number of tools to harvest biomass from land should be used to meet the needs of the pyrolysis plant raw materials.

Indonesia is committed to reducing its emissions by one through the mechanism of REDD +, with a target of 26% in 2020 or it could reach 41% if there is assistance to Indonesia. Agriculture and waste contribute greatly in contributing to emissions, iklimkarbon.com for the detail info. The flow of funds from developed to developing countries through REDD + reached 30 billion U.S. dollars worth of IDR 270 trillion per year. Indonesia launched the Indonesia green with the movement of one billion trees. One tree can absorb CO2 is known to 28 tons / year and hold water up to 100 liters / year. While the average human breathe in oxygen of 10 tons / year and uses 10 liters of water / day.
Let salvation of the earth by stopping the burning of forests and convert biomass waste into energy and biochar. To see the JF BioCarbon pot test please click here
Rabu, 03 Agustus 2011
GENERAL OVERVIEW OF CHARCOAL PROPERTIES

The quality of charcoal depends on both wood species used as a raw material and of the proper application of the carbonisation technology. Charcoal produced from hardwood like beech or oak is heavy and strong. Charcoal made from softwood, on the other hand, is soft and light. The density of beech charcoal is 0.45 t/m3a, that of pine charcoal 0.28 t/m3. The bulk density of charcoal does not only depend on the apparent density but also on the size distribution, and is in the range of 180-220 kg/m3. The gross calorific value (GCV) is usually in the range of 29-33 GJ/t.
Good quality charcoal was characterized by Chaturvedi as follows: “[It] retains the grain of the wood; it is jet black in colour with a shining luster in a fresh cross-section. It is sonorous with a metallic ring, and does not crush, nor does it soil the fingers. It floats in water, is a bad conductor of heat and electricity, and burns without flame.”
Charcoal intended for barbecue typically contains 20-30%mass of volatiles, whereas metallurgical charcoal often contains 10-15%m (or even less) volatile matter. Hence, taking ash contents into account, the fixed carbon content is 78-90 %mass.
This carbon is a finely crystalline and practically free of sulfur. Charcoal also contains volatiles that may escape at elevated temperatures (obviously above the charcoal manufacturing process of approximately 400 C), consisting of hydrogen, oxygen, and nitrogen. Ash content is approximately 1.5-5%mass. Charcoal also contains water, the amount being dependent on ambient temperature and humidity. Moisture content varies between 5 %m-8 %mass.

Standards for barbecue charcoal and charcoal briquettes, according to EN 1860.
Charcoal: Carbon (fix), dry basis > 75% Ash, dry basis < 8% Moisture, wet basis < 8% Granulation [d > 80 mm] < 10% [d > 20 mm] > 80% [0 mm < d < 10 mm] < 7% Bulk density > 130 kg/m3
Charcoal briquettes: Carbon (fix), dry basis > 60% Ash, dry basis < 18% Moisture, wet basis < 8% Granulation Suitable for BBQ equipment of EN 1860-1 [d < 20 mm] < 10% Binder Combustion gases cause no health hazards in contact with food. Binder is of food grade quality.
Source : INDUSTRIAL CHARCOAL PRODUCTION, A Development of a sustainable charcoal industry,Presented by FAO
Kamis, 21 Juli 2011
COCONUT SHELLS AND PALM SHELL USED AS WATER PURIFIERS IN TOKYO

Granulated charcoal, made of shells of coconuts and palm kernels, is being used by treatment plants in Tokyo and neighboring regions to filter tap water supplies and protect the city’s water from radiations leaked by a damaged nuclear power plant, according to a report last month from www.bloomberg.com. Prices for the absorbent carbon material have risen as much as 44 percent since the March 11 earthquake and tsunami that triggered the radiation threat, said Yoshio Toi, a spokesman for the municipal government in Chiba, a prefecture neighboring Tokyo.

Treatment plants are trying to remove any traces of radioactive matter, such as iodine-131, known to cause thyroid cancer, and convince customers that water supplies are safe. Some Tokyo facilities more than quadrupled the amount of activated charcoal used in filtration after a March 21 sample contained iodine-131 that exceeded the safe limit for infants. “Tokyo is ordering more activated charcoal as we deplete our stocks,” said Gen Ozeki, a spokesman for the city’s Bureau of Waterworks. “It’s not just Tokyo doing this, others are taking extraordinary measures for their water, too, so charcoal is becoming scarce.” Kuraray Co., which produces about 24,500 tons of a year of activated charcoal, is receiving orders for “several hundred tons” daily from utilities in and around Tokyo, said Takeshi Hasegawa, a spokesman for the Tokyo-based company. He declined to comment on prices.